Merge pull request #42 from tqchen/unity

Unity this is final minor change in data structure
This commit is contained in:
Tianqi Chen 2014-08-24 17:23:46 -07:00
commit 4c023077dd
7 changed files with 112 additions and 51 deletions

View File

@ -42,11 +42,17 @@ class TreeModel {
int max_depth;
/*! \brief number of features used for tree construction */
int num_feature;
/*!
* \brief leaf vector size, used for vector tree
* used to store more than one dimensional information in tree
*/
int size_leaf_vector;
/*! \brief reserved part */
int reserved[32];
int reserved[31];
/*! \brief constructor */
Param(void) {
max_depth = 0;
size_leaf_vector = 0;
memset(reserved, 0, sizeof(reserved));
}
/*!
@ -57,6 +63,7 @@ class TreeModel {
inline void SetParam(const char *name, const char *val) {
if (!strcmp("num_roots", name)) num_roots = atoi(val);
if (!strcmp("num_feature", name)) num_feature = atoi(val);
if (!strcmp("size_leaf_vector", name)) size_leaf_vector = atoi(val);
}
};
/*! \brief tree node */
@ -166,10 +173,12 @@ class TreeModel {
protected:
// vector of nodes
std::vector<Node> nodes;
// stats of nodes
std::vector<TNodeStat> stats;
// free node space, used during training process
std::vector<int> deleted_nodes;
// stats of nodes
std::vector<TNodeStat> stats;
// leaf vector, that is used to store additional information
std::vector<bst_float> leaf_vector;
// allocate a new node,
// !!!!!! NOTE: may cause BUG here, nodes.resize
inline int AllocNode(void) {
@ -184,6 +193,7 @@ class TreeModel {
"number of nodes in the tree exceed 2^31");
nodes.resize(param.num_nodes);
stats.resize(param.num_nodes);
leaf_vector.resize(param.num_nodes * param.size_leaf_vector);
return nd;
}
// delete a tree node
@ -247,6 +257,14 @@ class TreeModel {
inline NodeStat &stat(int nid) {
return stats[nid];
}
/*! \brief get leaf vector given nid */
inline bst_float* leafvec(int nid) {
return &leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief get leaf vector given nid */
inline const bst_float* leafvec(int nid) const{
return &leaf_vector[nid * param.size_leaf_vector];
}
/*! \brief initialize the model */
inline void InitModel(void) {
param.num_nodes = param.num_roots;

View File

@ -145,8 +145,8 @@ struct GradStats {
double sum_grad;
/*! \brief sum hessian statistics */
double sum_hess;
/*! \brief constructor */
GradStats(void) {
/*! \brief constructor, the object must be cleared during construction */
explicit GradStats(const TrainParam &param) {
this->Clear();
}
/*! \brief clear the statistics */
@ -169,29 +169,31 @@ struct GradStats {
inline double CalcWeight(const TrainParam &param) const {
return param.CalcWeight(sum_grad, sum_hess);
}
/*!\brief calculate gain of the solution */
/*! \brief calculate gain of the solution */
inline double CalcGain(const TrainParam &param) const {
return param.CalcGain(sum_grad, sum_hess);
}
/*! \brief add statistics to the data */
inline void Add(double grad, double hess) {
sum_grad += grad; sum_hess += hess;
}
/*! \brief add statistics to the data */
inline void Add(const GradStats &b) {
this->Add(b.sum_grad, b.sum_hess);
}
/*! \brief substract the statistics by b */
inline GradStats Substract(const GradStats &b) const {
GradStats res;
res.sum_grad = this->sum_grad - b.sum_grad;
res.sum_hess = this->sum_hess - b.sum_hess;
return res;
/*! \brief set current value to a - b */
inline void SetSubstract(const GradStats &a, const GradStats &b) {
sum_grad = a.sum_grad - b.sum_grad;
sum_hess = a.sum_hess - b.sum_hess;
}
/*! \return whether the statistics is not used yet */
inline bool Empty(void) const {
return sum_hess == 0.0;
}
/*! \brief set leaf vector value based on statistics */
inline void SetLeafVec(const TrainParam &param, bst_float *vec) const{
}
protected:
/*! \brief add statistics to the data */
inline void Add(double grad, double hess) {
sum_grad += grad; sum_hess += hess;
}
};
/*!

View File

@ -51,8 +51,8 @@ class ColMaker: public IUpdater<FMatrix> {
/*! \brief current best solution */
SplitEntry best;
// constructor
ThreadEntry(void) {
stats.Clear();
explicit ThreadEntry(const TrainParam &param)
: stats(param) {
}
};
struct NodeEntry {
@ -65,8 +65,8 @@ class ColMaker: public IUpdater<FMatrix> {
/*! \brief current best solution */
SplitEntry best;
// constructor
NodeEntry(void) : root_gain(0.0f), weight(0.0f){
stats.Clear();
explicit NodeEntry(const TrainParam &param)
: stats(param), root_gain(0.0f), weight(0.0f){
}
};
// actual builder that runs the algorithm
@ -100,6 +100,7 @@ class ColMaker: public IUpdater<FMatrix> {
p_tree->stat(nid).loss_chg = snode[nid].best.loss_chg;
p_tree->stat(nid).base_weight = snode[nid].weight;
p_tree->stat(nid).sum_hess = static_cast<float>(snode[nid].stats.sum_hess);
snode[nid].stats.SetLeafVec(param, p_tree->leafvec(nid));
}
}
@ -179,9 +180,9 @@ class ColMaker: public IUpdater<FMatrix> {
const RegTree &tree) {
{// setup statistics space for each tree node
for (size_t i = 0; i < stemp.size(); ++i) {
stemp[i].resize(tree.param.num_nodes, ThreadEntry());
stemp[i].resize(tree.param.num_nodes, ThreadEntry(param));
}
snode.resize(tree.param.num_nodes, NodeEntry());
snode.resize(tree.param.num_nodes, NodeEntry(param));
}
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
// setup position
@ -196,7 +197,7 @@ class ColMaker: public IUpdater<FMatrix> {
// sum the per thread statistics together
for (size_t j = 0; j < qexpand.size(); ++j) {
const int nid = qexpand[j];
TStats stats; stats.Clear();
TStats stats(param);
for (size_t tid = 0; tid < stemp.size(); ++tid) {
stats.Add(stemp[tid][nid].stats);
}
@ -231,6 +232,8 @@ class ColMaker: public IUpdater<FMatrix> {
for (size_t j = 0; j < qexpand.size(); ++j) {
temp[qexpand[j]].stats.Clear();
}
// left statistics
TStats c(param);
while (it.Next()) {
const bst_uint ridx = it.rindex();
const int nid = position[ridx];
@ -246,7 +249,7 @@ class ColMaker: public IUpdater<FMatrix> {
} else {
// try to find a split
if (fabsf(fvalue - e.last_fvalue) > rt_2eps && e.stats.sum_hess >= param.min_child_weight) {
TStats c = snode[nid].stats.Substract(e.stats);
c.SetSubstract(snode[nid].stats, e.stats);
if (c.sum_hess >= param.min_child_weight) {
double loss_chg = e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain;
e.best.Update(loss_chg, fid, (fvalue + e.last_fvalue) * 0.5f, !is_forward_search);
@ -261,7 +264,7 @@ class ColMaker: public IUpdater<FMatrix> {
for (size_t i = 0; i < qexpand.size(); ++i) {
const int nid = qexpand[i];
ThreadEntry &e = temp[nid];
TStats c = snode[nid].stats.Substract(e.stats);
c.SetSubstract(snode[nid].stats, e.stats);
if (e.stats.sum_hess >= param.min_child_weight && c.sum_hess >= param.min_child_weight) {
const double loss_chg = e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain;
const float delta = is_forward_search ? rt_eps : -rt_eps;

View File

@ -44,8 +44,8 @@ class TreeRefresher: public IUpdater<FMatrix> {
int tid = omp_get_thread_num();
for (size_t i = 0; i < trees.size(); ++i) {
std::vector<TStats> &vec = stemp[tid * trees.size() + i];
vec.resize(trees[i]->param.num_nodes);
std::fill(vec.begin(), vec.end(), TStats());
vec.resize(trees[i]->param.num_nodes, TStats(param));
std::fill(vec.begin(), vec.end(), TStats(param));
}
fvec_temp[tid].Init(trees[0]->param.num_feature);
}
@ -114,6 +114,7 @@ class TreeRefresher: public IUpdater<FMatrix> {
RegTree &tree = *p_tree;
tree.stat(nid).base_weight = gstats[nid].CalcWeight(param);
tree.stat(nid).sum_hess = static_cast<float>(gstats[nid].sum_hess);
gstats[nid].SetLeafVec(param, tree.leafvec(nid));
if (tree[nid].is_leaf()) {
tree[nid].set_leaf(tree.stat(nid).base_weight * param.learning_rate);
} else {

View File

@ -19,6 +19,7 @@ xglib.XGDMatrixCreateFromCSR.restype = ctypes.c_void_p
xglib.XGDMatrixCreateFromMat.restype = ctypes.c_void_p
xglib.XGDMatrixSliceDMatrix.restype = ctypes.c_void_p
xglib.XGDMatrixGetFloatInfo.restype = ctypes.POINTER(ctypes.c_float)
xglib.XGDMatrixGetUIntInfo.restype = ctypes.POINTER(ctypes.c_uint)
xglib.XGDMatrixNumRow.restype = ctypes.c_ulong
xglib.XGBoosterCreate.restype = ctypes.c_void_p
@ -27,10 +28,10 @@ xglib.XGBoosterEvalOneIter.restype = ctypes.c_char_p
xglib.XGBoosterDumpModel.restype = ctypes.POINTER(ctypes.c_char_p)
def ctypes2numpy(cptr, length):
def ctypes2numpy(cptr, length, dtype):
# convert a ctypes pointer array to numpy
assert isinstance(cptr, ctypes.POINTER(ctypes.c_float))
res = numpy.zeros(length, dtype='float32')
res = numpy.zeros(length, dtype=dtype)
assert ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0])
return res
@ -76,23 +77,31 @@ class DMatrix:
# destructor
def __del__(self):
xglib.XGDMatrixFree(self.handle)
def __get_float_info(self, field):
def get_float_info(self, field):
length = ctypes.c_ulong()
ret = xglib.XGDMatrixGetFloatInfo(self.handle, ctypes.c_char_p(field.encode('utf-8')),
ctypes.byref(length))
return ctypes2numpy(ret, length.value)
def __set_float_info(self, field, data):
xglib.XGDMatrixSetFloatInfo(self.handle,ctypes.c_char_p(field.encode('utf-8')),
return ctypes2numpy(ret, length.value, 'float32')
def get_uint_info(self, field):
length = ctypes.c_ulong()
ret = xglib.XGDMatrixGetUIntInfo(self.handle, ctypes.c_char_p(field.encode('utf-8')),
ctypes.byref(length))
return ctypes2numpy(ret, length.value, 'uint32')
def set_float_info(self, field, data):
xglib.XGDMatrixSetFloatInfo(self.handle, ctypes.c_char_p(field.encode('utf-8')),
(ctypes.c_float*len(data))(*data), len(data))
def set_uint_info(self, field, data):
xglib.XGDMatrixSetUIntInfo(self.handle, ctypes.c_char_p(field.encode('utf-8')),
(ctypes.c_uint*len(data))(*data), len(data))
# load data from file
def save_binary(self, fname, silent=True):
xglib.XGDMatrixSaveBinary(self.handle, ctypes.c_char_p(fname.encode('utf-8')), int(silent))
# set label of dmatrix
def set_label(self, label):
self.__set_float_info('label', label)
self.set_float_info('label', label)
# set weight of each instances
def set_weight(self, weight):
self.__set_float_info('weight', weight)
self.set_float_info('weight', weight)
# set initialized margin prediction
def set_base_margin(self, margin):
"""
@ -103,19 +112,19 @@ class DMatrix:
e.g. for logistic regression: need to put in value before logistic transformation
see also example/demo.py
"""
self.__set_float_info('base_margin', margin)
self.set_float_info('base_margin', margin)
# set group size of dmatrix, used for rank
def set_group(self, group):
xglib.XGDMatrixSetGroup(self.handle, (ctypes.c_uint*len(group))(*group), len(group))
# get label from dmatrix
def get_label(self):
return self.__get_float_info('label')
return self.get_float_info('label')
# get weight from dmatrix
def get_weight(self):
return self.__get_float_info('weight')
return self.get_float_info('weight')
# get base_margin from dmatrix
def get_base_margin(self):
return self.__get_float_info('base_margin')
return self.get_float_info('base_margin')
def num_row(self):
return xglib.XGDMatrixNumRow(self.handle)
# slice the DMatrix to return a new DMatrix that only contains rindex
@ -189,7 +198,7 @@ class Booster:
length = ctypes.c_ulong()
preds = xglib.XGBoosterPredict(self.handle, data.handle,
int(output_margin), ctypes.byref(length))
return ctypes2numpy(preds, length.value)
return ctypes2numpy(preds, length.value, 'float32')
def save_model(self, fname):
""" save model to file """
xglib.XGBoosterSaveModel(self.handle, ctypes.c_char_p(fname.encode('utf-8')))

View File

@ -88,10 +88,10 @@ extern "C"{
mat.row_data_.resize(nelem);
for (size_t i = 0; i < nelem; ++i) {
mat.row_data_[i] = SparseBatch::Entry(indices[i], data[i]);
mat.info.num_col = std::max(mat.info.num_col,
static_cast<size_t>(indices[i]+1));
mat.info.info.num_col = std::max(mat.info.info.num_col,
static_cast<size_t>(indices[i]+1));
}
mat.info.num_row = nindptr - 1;
mat.info.info.num_row = nindptr - 1;
return p_mat;
}
void* XGDMatrixCreateFromMat(const float *data,
@ -100,8 +100,8 @@ extern "C"{
float missing) {
DMatrixSimple *p_mat = new DMatrixSimple();
DMatrixSimple &mat = *p_mat;
mat.info.num_row = nrow;
mat.info.num_col = ncol;
mat.info.info.num_row = nrow;
mat.info.info.num_col = ncol;
for (size_t i = 0; i < nrow; ++i, data += ncol) {
size_t nelem = 0;
for (size_t j = 0; j < ncol; ++j) {
@ -130,8 +130,8 @@ extern "C"{
utils::Check(src.info.group_ptr.size() == 0,
"slice does not support group structure");
ret.Clear();
ret.info.num_row = len;
ret.info.num_col = src.info.num_col;
ret.info.info.num_row = len;
ret.info.info.num_col = src.info.num_col();
utils::IIterator<SparseBatch> *iter = src.fmat.RowIterator();
iter->BeforeFirst();
@ -165,10 +165,16 @@ extern "C"{
}
void XGDMatrixSetFloatInfo(void *handle, const char *field, const float *info, size_t len) {
std::vector<float> &vec =
static_cast<DataMatrix*>(handle)->info.GetInfo(field);
static_cast<DataMatrix*>(handle)->info.GetFloatInfo(field);
vec.resize(len);
memcpy(&vec[0], info, sizeof(float) * len);
}
void XGDMatrixSetUIntInfo(void *handle, const char *field, const unsigned *info, size_t len) {
std::vector<unsigned> &vec =
static_cast<DataMatrix*>(handle)->info.GetUIntInfo(field);
vec.resize(len);
memcpy(&vec[0], info, sizeof(unsigned) * len);
}
void XGDMatrixSetGroup(void *handle, const unsigned *group, size_t len) {
DataMatrix *pmat = static_cast<DataMatrix*>(handle);
pmat->info.group_ptr.resize(len + 1);
@ -179,12 +185,18 @@ extern "C"{
}
const float* XGDMatrixGetFloatInfo(const void *handle, const char *field, size_t* len) {
const std::vector<float> &vec =
static_cast<const DataMatrix*>(handle)->info.GetInfo(field);
static_cast<const DataMatrix*>(handle)->info.GetFloatInfo(field);
*len = vec.size();
return &vec[0];
}
const unsigned* XGDMatrixGetUIntInfo(const void *handle, const char *field, size_t* len) {
const std::vector<unsigned> &vec =
static_cast<const DataMatrix*>(handle)->info.GetUIntInfo(field);
*len = vec.size();
return &vec[0];
}
size_t XGDMatrixNumRow(const void *handle) {
return static_cast<const DataMatrix*>(handle)->info.num_row;
return static_cast<const DataMatrix*>(handle)->info.num_row();
}
// xgboost implementation

View File

@ -69,6 +69,14 @@ extern "C" {
* \param len length of array
*/
void XGDMatrixSetFloatInfo(void *handle, const char *field, const float *array, size_t len);
/*!
* \brief set uint32 vector to a content in info
* \param handle a instance of data matrix
* \param field field name
* \param array pointer to float vector
* \param len length of array
*/
void XGDMatrixSetUIntInfo(void *handle, const char *field, const unsigned *array, size_t len);
/*!
* \brief set label of the training matrix
* \param handle a instance of data matrix
@ -81,9 +89,17 @@ extern "C" {
* \param handle a instance of data matrix
* \param field field name
* \param out_len used to set result length
* \return pointer to the label
* \return pointer to the result
*/
const float* XGDMatrixGetFloatInfo(const void *handle, const char *field, size_t* out_len);
/*!
* \brief get uint32 info vector from matrix
* \param handle a instance of data matrix
* \param field field name
* \param out_len used to set result length
* \return pointer to the result
*/
const unsigned* XGDMatrixGetUIntInfo(const void *handle, const char *field, size_t* out_len);
/*!
* \brief return number of rows
*/