Merge pull request #1 from tqchen/dev

2.0 version, lots of changes
This commit is contained in:
Tianqi Chen 2014-05-16 20:53:19 -07:00
commit 495e37e0dc
10 changed files with 75 additions and 17 deletions

1
.gitignore vendored
View File

@ -23,3 +23,4 @@ xgboost
*group
*rar
*vali
*data

View File

@ -15,6 +15,8 @@ Features
- Sparse feature format allows easy handling of missing values, and improve computation efficiency.
* Push the limit on single machine:
- Efficient implementation that optimizes memory and computation.
* Speed: XGBoost is very fast
- IN [demo/higgs/speedtest.py](demo/kaggle-higgs/speedtest.py), kaggle higgs data it is faster(on our machine 20 times faster using 4 threads) than sklearn.ensemble.GradientBoostingClassifier
* Layout of gradient boosting algorithm to support user defined objective
* Python interface, works with numpy and scipy.sparse matrix

View File

@ -14,7 +14,6 @@ make
3. Run ./run.sh
Speed
=====
speedtest.py compares xgboost's speed on this dataset with sklearn.GBM

View File

@ -0,0 +1,10 @@
Demonstrating how to use XGBoost accomplish Multi-Class classification task on [UCI Dermatology dataset](https://archive.ics.uci.edu/ml/datasets/Dermatology)
Make sure you make make xgboost python module in ../../python
1. Run runexp.sh
```bash
./runexp.sh
```
Explainations can be found in [wiki](https://github.com/tqchen/xgboost/wiki)

View File

@ -0,0 +1,9 @@
#!/bin/bash
if [ -f dermatology.data ]
then
echo "use existing data to run multi class classification"
else
echo "getting data from uci, make sure you are connected to internet"
wget https://archive.ics.uci.edu/ml/machine-learning-databases/dermatology/dermatology.data
fi
python train.py

View File

@ -0,0 +1,42 @@
#! /usr/bin/python
import sys
import numpy as np
sys.path.append('../../python/')
import xgboost as xgb
# label need to be 0 to num_class -1
data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
sz = data.shape
train = data[:int(sz[0] * 0.7), :]
test = data[int(sz[0] * 0.7):, :]
train_X = train[:,0:33]
train_Y = train[:, 34]
test_X = test[:,0:33]
test_Y = test[:, 34]
xg_train = xgb.DMatrix( train_X, label=train_Y)
xg_test = xgb.DMatrix(test_X, label=test_Y)
# setup parameters for xgboost
param = {}
# use softmax multi-class classification
param['objective'] = 'multi:softmax'
# scale weight of positive examples
param['bst:eta'] = 0.1
param['bst:max_depth'] = 6
param['silent'] = 1
param['nthread'] = 4
param['num_class'] = 6
watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
num_round = 5
bst = xgb.train(param, xg_train, num_round, watchlist );
# get prediction
pred = bst.predict( xg_test );
print 'predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in xrange(len(test_Y))) / float(len(test_Y)) )

View File

@ -2,7 +2,7 @@
# choose the tree booster, 0: tree, 1: linear
booster_type = 0
# so far, we have pairwise rank
# specify objective
objective="rank:pairwise"
# Tree Booster Parameters

View File

@ -1,14 +1,8 @@
#Download the dataset from web site
wget http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2008.rar
python trans_data.py train.txt mq2008.train mq2008.train.group
#please first install the unrar package
unrar x MQ2008
python trans_data.py test.txt mq2008.test mq2008.test.group
python trans_data.py MQ2008/Fold1/train.txt mq2008.train mq2008.train.group
python trans_data.py MQ2008/Fold1/test.txt mq2008.test mq2008.test.group
python trans_data.py MQ2008/Fold1/vali.txt mq2008.vali mq2008.vali.group
python trans_data.py vali.txt mq2008.vali mq2008.vali.group
../../xgboost mq2008.conf

View File

@ -97,8 +97,8 @@ namespace xgboost{
*/
inline void InitTrainer(void){
if( mparam.num_class != 0 ){
if( name_obj_ != "softmax" ){
name_obj_ = "softmax";
if( name_obj_ != "multi:softmax" ){
name_obj_ = "multi:softmax";
printf("auto select objective=softmax to support multi-class classification\n" );
}
}

View File

@ -113,9 +113,10 @@ namespace xgboost{
if( !strcmp("reg:logistic", name ) ) return new RegressionObj( LossType::kLogisticNeglik );
if( !strcmp("binary:logistic", name ) ) return new RegressionObj( LossType::kLogisticClassify );
if( !strcmp("binary:logitraw", name ) ) return new RegressionObj( LossType::kLogisticRaw );
if( !strcmp("multi:softmax", name ) ) return new SoftmaxMultiClassObj();
if( !strcmp("multi:softmax", name ) ) return new SoftmaxMultiClassObj();
if( !strcmp("rank:pairwise", name ) ) return new PairwiseRankObj();
if( !strcmp("rank:softmax", name ) ) return new SoftmaxRankObj();
if( !strcmp("rank:pairwise", name ) ) return new PairwiseRankObj();
if( !strcmp("rank:softmax", name ) ) return new SoftmaxRankObj();
utils::Error("unknown objective function type");
return NULL;
}