Merge pull request #1213 from tqchen/master

[DOC] refactor doc
This commit is contained in:
Tianqi Chen 2016-05-20 13:10:11 -07:00
commit 47f359ca9f
14 changed files with 128 additions and 57 deletions

View File

@ -9,7 +9,7 @@ You have find XGBoost R Package!
Get Started
-----------
* Checkout the [Installation Guide](../build.md) contains instructions to install xgboost, and [Tutorials](#tutorials) for examples on how to use xgboost for various tasks.
* Please visit [walk through example](demo).
* Please visit [walk through example](../../R-package/demo).
Tutorials
---------

3
doc/cli/index.md Normal file
View File

@ -0,0 +1,3 @@
# XGBoost Command Line version
See [XGBoost Command Line walkthrough](https://github.com/dmlc/xgboost/blob/master/demo/binary_classification/README.md)

View File

@ -117,10 +117,11 @@ todo_include_todos = False
# -- Options for HTML output ----------------------------------------------
html_theme_path = ['_static']
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
# html_theme = 'alabaster'
html_theme = 'sphinx_rtd_theme'
html_theme = 'xgboost-theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,

80
doc/get_started/index.md Normal file
View File

@ -0,0 +1,80 @@
# Get Started with XGBoost
This is a quick started tutorial showing snippets for you to quickly try out xgboost
on the demo dataset on a binary classification task.
## Links to Helpful Other Resources
- See [Installation Guide](../build.md) on how to install xgboost.
- See [How to pages](../how_to/index.md) on various tips on using xgboost.
- See [Tutorials](../tutorials/index.md) on tutorials on specific tasks.
- See [Learning to use XGBoost by Examples](../../demo) for more code examples.
## Python
```python
import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
# make prediction
preds = bst.predict(dtest)
```
## R
```r
# load data
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround = 2,
nthread = 2, objective = "binary:logistic")
# predict
pred <- predict(bst, test$data)
```
## Julia
```julia
using XGBoost
# read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
# fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)
# predict
pred = predict(bst, test_X)
```
## Scala
```scala
import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost
object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =
new DMatrix("/path/to/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap
// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")
}
}
```

16
doc/how_to/index.md Normal file
View File

@ -0,0 +1,16 @@
# XGBoost How To
This page contains guidelines to use and develop mxnets.
## Installation
- [How to Install XGBoost](../build.md)
## Use XGBoost in Specific Ways
- [Parameter tunning guide](param_tuning.md)
- [Use out of core computation for large dataset](external_memory.md)
## Develop and Hack XGBoost
- [Contribute to XGBoost](contribute.md)
## Frequently Ask Questions
- [FAQ](../faq.md)

View File

@ -1,59 +1,15 @@
XGBoost Documentation
=====================
This is document of xgboost library.
XGBoost is short for eXtreme gradient boosting. This is a library that is designed, and optimized for boosted (tree) algorithms.
The goal of this library is to push the extreme of the computation limits of machines to provide a ***scalable***, ***portable*** and ***accurate***
for large scale tree boosting.
This document is hosted at http://xgboost.readthedocs.org/. You can also browse most of the documents in github directly.
Package Documents
-----------------
This section contains language specific package guide.
* [XGBoost Command Line Usage Walkthrough](../demo/binary_classification/README.md)
These are used to generate the index used in search.
* [Python Package Document](python/index.md)
* [R Package Document](R-package/index.md)
* [Java/Scala Package Document](jvm/index.md)
* [XGBoost.jl Julia Package](https://github.com/dmlc/XGBoost.jl)
User Guides
-----------
This section contains users guides that are general across languages.
* [Installation Guide](build.md)
* [Introduction to Boosted Trees](model.md)
* [Distributed Training Tutorial](tutorial/aws_yarn.md)
* [Frequently Asked Questions](faq.md)
* [External Memory Version](external_memory.md)
* [Learning to use XGBoost by Example](../demo)
* [Parameters](parameter.md)
* [Text input format](input_format.md)
* [Notes on Parameter Tunning](param_tuning.md)
Tutorials
---------
This section contains official tutorials of XGBoost package.
See [Awesome XGBoost](https://github.com/dmlc/xgboost/tree/master/demo) for links to mores resources.
* [Introduction to XGBoost in R](R-package/xgboostPresentation.md) (R package)
- This is a general presentation about xgboost in R.
* [Discover your data with XGBoost in R](R-package/discoverYourData.md) (R package)
- This tutorial explaining feature analysis in xgboost.
* [Introduction of XGBoost in Python](python/python_intro.md) (python)
- This tutorial introduces the python package of xgboost
* [Understanding XGBoost Model on Otto Dataset](../demo/kaggle-otto/understandingXGBoostModel.Rmd) (R package)
- This tutorial teaches you how to use xgboost to compete kaggle otto challenge.
Developer Guide
---------------
* [Contributor Guide](dev-guide/contribute.md)
Indices and tables
------------------
```eval_rst
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
```
* [Julia Package Document](julia/index.md)
* [CLI Package Document](cli/index.md)
- [Howto Documents](how_to/index.md)
- [Get Started Documents](get_started/index.md)
- [Tutorials](tutorials/index.md)

3
doc/julia/index.md Normal file
View File

@ -0,0 +1,3 @@
# XGBoost.jl
See [XGBoost.jl Project page](https://github.com/dmlc/XGBoost.jl)

View File

@ -7,20 +7,24 @@ You have find XGBoost JVM Package!
Installation
------------
Currently, XGBoost4J only support installation from source. Building XGBoost4J using Maven requires Maven 3 or newer and Java 7+.
Currently, XGBoost4J only support installation from source. Building XGBoost4J using Maven requires Maven 3 or newer and Java 7+.
Before you install XGBoost4J, you need to define environment variable `JAVA_HOME` as your JDK directory to ensure that your compiler can find `jni.h` correctly, since XGBoost4J relies on JNI to implement the interaction between the JVM and native libraries.
After your `JAVA_HOME` is defined correctly, it is as simple as run `mvn package` under jvm-packages directory to install XGBoost4J.
NOTE: XGBoost4J requires to run with Spark 1.6 or newer
NOTE: XGBoost4J requires to run with Spark 1.6 or newer
Contents
--------
* [Java Overview Tutorial](java_intro.md)
Resources
---------
* [Code Examples](https://github.com/dmlc/xgboost/tree/master/jvm-packages/xgboost4j-example)
* [Java API Docs](http://dmlc.ml/docs/javadocs/index.html)
* [Scala API Docs]
## Scala API Docs
* [XGBoost4J](http://dmlc.ml/docs/scaladocs/xgboost4j/index.html)
* [XGBoost4J-Spark](http://dmlc.ml/docs/scaladocs/xgboost4j-spark/index.html)
* [XGBoost4J-Flink](http://dmlc.ml/docs/scaladocs/xgboost4j-flink/index.html)

View File

@ -72,7 +72,7 @@ Parameters for Tree Booster
but consider set to lower number for more accurate enumeration.
- range: (0, 1)
* scale_pos_weight, [default=0]
- Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases) See [Parameters Tuning](param_tuning.md) for more discussion. Also see Higgs Kaggle competition demo for examples: [R](../demo/kaggle-higgs/higgs-train.R ), [py1](../demo/kaggle-higgs/higgs-numpy.py ), [py2](../demo/kaggle-higgs/higgs-cv.py ), [py3](../demo/guide-python/cross_validation.py)
- Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to consider: sum(negative cases) / sum(positive cases) See [Parameters Tuning](how_to/param_tuning.md) for more discussion. Also see Higgs Kaggle competition demo for examples: [R](../demo/kaggle-higgs/higgs-train.R ), [py1](../demo/kaggle-higgs/higgs-numpy.py ), [py2](../demo/kaggle-higgs/higgs-cv.py ), [py3](../demo/guide-python/cross_validation.py)
Parameters for Linear Booster
-----------------------------

8
doc/tutorials/index.md Normal file
View File

@ -0,0 +1,8 @@
# XGBoost Tutorials
This section contains official tutorials inside XGBoost package.
See [Awesome XGBoost](https://github.com/dmlc/xgboost/tree/master/demo) for links to mores resources.
## Contents
- [Introduction to Boosted Trees](../model.md)
- [Distributed XGBoost YARN on AWS](aws_yarn.md)