cleanup reg
This commit is contained in:
parent
56e4a2ced1
commit
45a452b27e
102
booster/gbrt.h
102
booster/gbrt.h
@ -1,102 +0,0 @@
|
||||
#ifndef _GBRT_H_
|
||||
#define _GBRT_H_
|
||||
|
||||
#include "../utils/xgboost_config.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
#include "xgboost_regression_data_reader.h"
|
||||
#include "xgboost_gbmbase.h"
|
||||
#include <math.h>
|
||||
using namespace xgboost::utils;
|
||||
using namespace xgboost::booster;
|
||||
|
||||
class gbrt{
|
||||
|
||||
public:
|
||||
gbrt(const char* config_path){
|
||||
ConfigIterator config_itr(config_path);
|
||||
while(config_itr.Next()){
|
||||
SetParam(config_itr.name,config_itr.val);
|
||||
base_model.SetParam(config_itr.name,config_itr.val);
|
||||
}
|
||||
}
|
||||
|
||||
void SetParam( const char *name, const char *val ){
|
||||
param.SetParam(name, val);
|
||||
}
|
||||
|
||||
void train(){
|
||||
xgboost_regression_data_reader data_reader(param.train_file_path);
|
||||
base_model.InitModel();
|
||||
base_model.InitTrainer();
|
||||
std::vector<float> grad,hess;
|
||||
std::vector<unsigned> root_index;
|
||||
int instance_num = data_reader.InsNum();
|
||||
float label = 0,pred_transform = 0;
|
||||
grad.resize(instance_num); hess.resize(instance_num);
|
||||
for(int i = 0; i < 100; i++){
|
||||
grad.clear();hess.clear();
|
||||
for(int j = 0; j < instance_num; j++){
|
||||
label = data_reader.GetLabel(j);
|
||||
pred_transform = Logistic(Predict(data_reader.GetLine(j)));
|
||||
grad.push_back(FirstOrderGradient(pred_transform,label));
|
||||
hess.push_back(SecondOrderGradient(pred_transform));
|
||||
}
|
||||
base_model.DoBoost(grad,hess,data_reader.GetImage(),root_index );
|
||||
}
|
||||
}
|
||||
|
||||
inline void SaveModel(IStream &fo ){
|
||||
base_model.SaveModel(fo);
|
||||
}
|
||||
|
||||
inline void LoadModel(IStream &fi ){
|
||||
base_model.LoadModel(fi);
|
||||
}
|
||||
|
||||
float Predict( const FMatrixS::Line &feat, int buffer_index = -1, unsigned rid = 0 ){
|
||||
return base_model.Predict(feat,buffer_index,rid);
|
||||
}
|
||||
|
||||
float Predict( const std::vector<float> &feat,
|
||||
const std::vector<bool> &funknown,
|
||||
int buffer_index = -1,
|
||||
unsigned rid = 0 ){
|
||||
return base_model.Predict(feat,funknown,buffer_index,rid);
|
||||
}
|
||||
|
||||
struct GBRTParam{
|
||||
|
||||
/*! \brief path of input training data */
|
||||
const char* train_file_path;
|
||||
|
||||
GBRTParam( void ){
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam( const char *name, const char *val ){
|
||||
if( !strcmp("train_file_path", name ) ) train_file_path = val;
|
||||
}
|
||||
};
|
||||
|
||||
private:
|
||||
inline float FirstOrderGradient(float pred_transform,float label){
|
||||
return label - pred_transform;
|
||||
}
|
||||
|
||||
inline float SecondOrderGradient(float pred_transform){
|
||||
return pred_transform * ( 1 - pred_transform );
|
||||
}
|
||||
|
||||
inline float Logistic(float x){
|
||||
return 1.0/(1.0 + exp(-x));
|
||||
}
|
||||
|
||||
GBMBaseModel base_model;
|
||||
GBRTParam param;
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
@ -13,6 +13,7 @@
|
||||
// implementations of boosters
|
||||
#include "tree/xgboost_svdf_tree.hpp"
|
||||
#include "linear/xgboost_linear.hpp"
|
||||
#include "../regression/xgboost_reg.h"
|
||||
|
||||
namespace xgboost{
|
||||
namespace booster{
|
||||
|
||||
154
regression/xgboost_reg.h
Normal file
154
regression/xgboost_reg.h
Normal file
@ -0,0 +1,154 @@
|
||||
#ifndef _XGBOOST_REG_H_
|
||||
#define _XGBOOST_REG_H_
|
||||
/*!
|
||||
* \file xgboost_reg.h
|
||||
* \brief class for gradient boosted regression
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cmath>
|
||||
#include "xgboost_regdata.h"
|
||||
#include "../booster/xgboost_gbmbase.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
namespace xgboost{
|
||||
namespace regression{
|
||||
/*! \brief class for gradient boosted regression */
|
||||
class RegBoostLearner{
|
||||
public:
|
||||
/*!
|
||||
* \brief a regression booter associated with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
RegBoostLearner( const DMatrix *train,
|
||||
std::vector<const DMatrix *> evals,
|
||||
std::vector<std::string> evname ){
|
||||
this->train_ = train;
|
||||
this->evals_ = evals;
|
||||
this->evname_ = evname;
|
||||
//TODO: assign buffer index
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam( const char *name, const char *val ){
|
||||
mparam.SetParam( name, val );
|
||||
base_model.SetParam( name, val );
|
||||
}
|
||||
/*!
|
||||
* \brief initialize solver before training, called before training
|
||||
* this function is reserved for solver to allocate necessary space and do other preparation
|
||||
*/
|
||||
inline void InitTrainer( void ){
|
||||
base_model.InitTrainer();
|
||||
mparam.AdjustBase();
|
||||
}
|
||||
/*!
|
||||
* \brief load model from stream
|
||||
* \param fi input stream
|
||||
*/
|
||||
inline void LoadModel( utils::IStream &fi ){
|
||||
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
|
||||
base_model.LoadModel( fi );
|
||||
}
|
||||
/*!
|
||||
* \brief save model to stream
|
||||
* \param fo output stream
|
||||
*/
|
||||
inline void SaveModel( utils::IStream &fo ) const{
|
||||
fo.Write( &mparam, sizeof(ModelParam) );
|
||||
base_model.SaveModel( fo );
|
||||
}
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
*/
|
||||
inline void UpdateOneIter( void ){
|
||||
//TODO
|
||||
}
|
||||
/*! \brief predict the results, given data */
|
||||
inline void Predict( std::vector<float> &preds, const DMatrix &data ){
|
||||
//TODO
|
||||
}
|
||||
private:
|
||||
/*! \brief training parameter for regression */
|
||||
struct ModelParam{
|
||||
/* \brief global bias */
|
||||
float base_score;
|
||||
/* \brief type of loss function */
|
||||
int loss_type;
|
||||
ModelParam( void ){
|
||||
base_score = 0.5f;
|
||||
loss_type = 0;
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam( const char *name, const char *val ){
|
||||
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
|
||||
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
|
||||
}
|
||||
/*!
|
||||
* \brief adjust base_score
|
||||
*/
|
||||
inline void AdjustBase( void ){
|
||||
if( loss_type == 1 ){
|
||||
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
|
||||
base_score = - logf( 1.0f / base_score - 1.0f );
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief calculate first order gradient of loss, given transformed prediction
|
||||
* \param predt transformed prediction
|
||||
* \param label true label
|
||||
* \return first order gradient
|
||||
*/
|
||||
inline float FirstOrderGradient( float predt, float label ) const{
|
||||
switch( loss_type ){
|
||||
case 0: return predt - label;
|
||||
case 1: return predt - label;
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief calculate second order gradient of loss, given transformed prediction
|
||||
* \param predt transformed prediction
|
||||
* \param label true label
|
||||
* \return second order gradient
|
||||
*/
|
||||
inline float SecondOrderGradient( float predt, float label ) const{
|
||||
switch( loss_type ){
|
||||
case 0: return 1.0f;
|
||||
case 1: return predt * ( 1 - predt );
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief transform the linear sum to prediction
|
||||
* \param x linear sum of boosting ensemble
|
||||
* \return transformed prediction
|
||||
*/
|
||||
inline float PredTransform( float x ){
|
||||
switch( loss_type ){
|
||||
case 0: return x;
|
||||
case 1: return 1.0f/(1.0f + expf(-x));
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
};
|
||||
private:
|
||||
booster::GBMBaseModel base_model;
|
||||
ModelParam mparam;
|
||||
const DMatrix *train_;
|
||||
std::vector<const DMatrix *> evals_;
|
||||
std::vector<std::string> evname_;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
||||
Loading…
x
Reference in New Issue
Block a user