[backport] Update CUDA docker image and NCCL. (#8139) (#8162)

* Update CUDA docker image and NCCL. (#8139)

* Rest of the CI.

* CPU test dependencies.
This commit is contained in:
Jiaming Yuan 2022-08-12 18:57:42 +08:00 committed by GitHub
parent a55d3bdde2
commit 39c1488a42
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 68 additions and 45 deletions

18
Jenkinsfile vendored
View File

@ -7,7 +7,7 @@
dockerRun = 'tests/ci_build/ci_build.sh'
// Which CUDA version to use when building reference distribution wheel
ref_cuda_ver = '11.0'
ref_cuda_ver = '11.0.3'
import groovy.transform.Field
@ -60,9 +60,9 @@ pipeline {
'build-cpu-rabit-mock': { BuildCPUMock() },
// Build reference, distribution-ready Python wheel with CUDA 11.0
// using CentOS 7 image
'build-gpu-cuda11.0': { BuildCUDA(cuda_version: '11.0', build_rmm: true) },
'build-gpu-rpkg': { BuildRPackageWithCUDA(cuda_version: '11.0') },
'build-jvm-packages-gpu-cuda11.0': { BuildJVMPackagesWithCUDA(spark_version: '3.0.1', cuda_version: '11.0') },
'build-gpu-cuda11.0': { BuildCUDA(cuda_version: '11.0.3', build_rmm: true) },
'build-gpu-rpkg': { BuildRPackageWithCUDA(cuda_version: '11.0.3') },
'build-jvm-packages-gpu-cuda11.0': { BuildJVMPackagesWithCUDA(spark_version: '3.0.1', cuda_version: '11.0.3') },
'build-jvm-packages': { BuildJVMPackages(spark_version: '3.0.1') },
'build-jvm-doc': { BuildJVMDoc() }
])
@ -77,9 +77,9 @@ pipeline {
'test-python-cpu': { TestPythonCPU() },
'test-python-cpu-arm64': { TestPythonCPUARM64() },
// artifact_cuda_version doesn't apply to RMM tests; RMM tests will always match CUDA version between artifact and host env
'test-python-gpu-cuda11.0': { TestPythonGPU(artifact_cuda_version: '11.0', host_cuda_version: '11.0', test_rmm: true) },
'test-python-mgpu-cuda11.0': { TestPythonGPU(artifact_cuda_version: '11.0', host_cuda_version: '11.0', multi_gpu: true, test_rmm: true) },
'test-cpp-gpu-cuda11.0': { TestCppGPU(artifact_cuda_version: '11.0', host_cuda_version: '11.0', test_rmm: true) },
'test-python-gpu-cuda11.0': { TestPythonGPU(artifact_cuda_version: '11.0.3', host_cuda_version: '11.0.3', test_rmm: true) },
'test-python-mgpu-cuda11.0': { TestPythonGPU(artifact_cuda_version: '11.0.3', host_cuda_version: '11.0.3', multi_gpu: true, test_rmm: true) },
'test-cpp-gpu-cuda11.0': { TestCppGPU(artifact_cuda_version: '11.0.3', host_cuda_version: '11.0.3', test_rmm: true) },
'test-jvm-jdk8': { CrossTestJVMwithJDK(jdk_version: '8', spark_version: '3.0.0') }
])
}
@ -123,7 +123,7 @@ def ClangTidy() {
echo "Running clang-tidy job..."
def container_type = "clang_tidy"
def docker_binary = "docker"
def dockerArgs = "--build-arg CUDA_VERSION_ARG=11.0"
def dockerArgs = "--build-arg CUDA_VERSION_ARG=11.0.3"
sh """
${dockerRun} ${container_type} ${docker_binary} ${dockerArgs} python3 tests/ci_build/tidy.py --cuda-archs 75
"""
@ -445,7 +445,7 @@ def DeployJVMPackages(args) {
if (env.BRANCH_NAME == 'master' || env.BRANCH_NAME.startsWith('release')) {
echo 'Deploying to xgboost-maven-repo S3 repo...'
sh """
${dockerRun} jvm_gpu_build docker --build-arg CUDA_VERSION_ARG=11.0 tests/ci_build/deploy_jvm_packages.sh ${args.spark_version}
${dockerRun} jvm_gpu_build docker --build-arg CUDA_VERSION_ARG=11.0.3 tests/ci_build/deploy_jvm_packages.sh ${args.spark_version}
"""
}
deleteDir()

View File

@ -38,6 +38,9 @@ void AllReducer::Init(int _device_ordinal) {
int32_t const rank = rabit::GetRank();
int32_t const world = rabit::GetWorldSize();
if (world == 1) {
return;
}
std::vector<uint64_t> uuids(world * kUuidLength, 0);
auto s_uuid = xgboost::common::Span<uint64_t>{uuids.data(), uuids.size()};

View File

@ -775,13 +775,16 @@ class AllReducer {
*/
void AllReduceSum(const double *sendbuff, double *recvbuff, int count) {
if (rabit::GetWorldSize() == 1) {
return;
}
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal_));
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclDouble, ncclSum, comm_, stream_));
allreduce_bytes_ += count * sizeof(double);
allreduce_calls_ += 1;
#endif
#endif // XGBOOST_USE_NCCL
}
/**
@ -796,9 +799,12 @@ class AllReducer {
void AllGather(uint32_t const* data, size_t length,
dh::caching_device_vector<uint32_t>* recvbuf) {
size_t world = rabit::GetWorldSize();
if (world == 1) {
return;
}
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
size_t world = rabit::GetWorldSize();
recvbuf->resize(length * world);
safe_nccl(ncclAllGather(data, recvbuf->data().get(), length, ncclUint32,
comm_, stream_));
@ -813,9 +819,11 @@ class AllReducer {
* \param recvbuff The recvbuff.
* \param count Number of elements.
*/
void AllReduceSum(const float *sendbuff, float *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
if (rabit::GetWorldSize() == 1) {
return;
}
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal_));
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclFloat, ncclSum, comm_, stream_));
@ -836,6 +844,9 @@ class AllReducer {
void AllReduceSum(const int64_t *sendbuff, int64_t *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
if (rabit::GetWorldSize() == 1) {
return;
}
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal_));
@ -845,6 +856,9 @@ class AllReducer {
void AllReduceSum(const uint32_t *sendbuff, uint32_t *recvbuff, int count) {
#ifdef XGBOOST_USE_NCCL
if (rabit::GetWorldSize() == 1) {
return;
}
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal_));
@ -853,6 +867,9 @@ class AllReducer {
}
void AllReduceSum(const uint64_t *sendbuff, uint64_t *recvbuff, int count) {
if (rabit::GetWorldSize() == 1) {
return;
}
#ifdef XGBOOST_USE_NCCL
CHECK(initialised_);
@ -867,12 +884,15 @@ class AllReducer {
std::enable_if_t<std::is_same<size_t, T>::value &&
!std::is_same<size_t, unsigned long long>::value> // NOLINT
* = nullptr>
void AllReduceSum(const T *sendbuff, T *recvbuff, int count) { // NOLINT
void AllReduceSum(const T *sendbuff, T *recvbuff, int count) { // NOLINT
#ifdef XGBOOST_USE_NCCL
if (rabit::GetWorldSize() == 1) {
return;
}
CHECK(initialised_);
dh::safe_cuda(cudaSetDevice(device_ordinal_));
static_assert(sizeof(unsigned long long) == sizeof(uint64_t), ""); // NOLINT
static_assert(sizeof(unsigned long long) == sizeof(uint64_t), ""); // NOLINT
dh::safe_nccl(ncclAllReduce(sendbuff, recvbuff, count, ncclUint64, ncclSum, comm_, stream_));
#endif
}

View File

@ -10,13 +10,13 @@ RUN \
apt-get install -y software-properties-common && \
add-apt-repository ppa:ubuntu-toolchain-r/test && \
apt-get update && \
apt-get install -y tar unzip wget git build-essential doxygen graphviz llvm libasan2 libidn11 ninja-build gcc-8 g++-8 && \
apt-get install -y tar unzip wget git build-essential doxygen graphviz llvm libasan2 libidn11 ninja-build gcc-8 g++-8 openjdk-8-jdk-headless && \
# CMake
wget -nv -nc https://cmake.org/files/v3.14/cmake-3.14.0-Linux-x86_64.sh --no-check-certificate && \
bash cmake-3.14.0-Linux-x86_64.sh --skip-license --prefix=/usr && \
# Python
wget -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
bash Miniconda3.sh -b -p /opt/python
wget https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh && \
bash Mambaforge-Linux-x86_64.sh -b -p /opt/python
ENV PATH=/opt/python/bin:$PATH
ENV CC=gcc-8
@ -24,10 +24,11 @@ ENV CXX=g++-8
ENV CPP=cpp-8
ENV GOSU_VERSION 1.10
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64/
# Create new Conda environment
COPY conda_env/cpu_test.yml /scripts/
RUN conda env create -n cpu_test --file=/scripts/cpu_test.yml
RUN mamba env create -n cpu_test --file=/scripts/cpu_test.yml
# Install lightweight sudo (not bound to TTY)
RUN set -ex; \

View File

@ -10,7 +10,7 @@ SHELL ["/bin/bash", "-c"] # Use Bash as shell
RUN \
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub && \
apt-get update && \
apt-get install -y wget unzip bzip2 libgomp1 build-essential && \
apt-get install -y wget unzip bzip2 libgomp1 build-essential openjdk-8-jdk-headless && \
# Python
wget -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
bash Miniconda3.sh -b -p /opt/python
@ -19,11 +19,14 @@ ENV PATH=/opt/python/bin:$PATH
# Create new Conda environment with cuDF, Dask, and cuPy
RUN \
conda create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \
python=3.8 cudf=21.10* rmm=21.10* cudatoolkit=$CUDA_VERSION_ARG dask dask-cuda=21.10* dask-cudf=21.10* cupy=9.1* \
numpy pytest scipy scikit-learn pandas matplotlib wheel python-kubernetes urllib3 graphviz hypothesis
conda install -c conda-forge mamba && \
mamba create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \
python=3.8 cudf=22.04* rmm=22.04* cudatoolkit=$CUDA_VERSION_ARG dask dask-cuda=22.04* dask-cudf=22.04* cupy \
numpy pytest scipy scikit-learn pandas matplotlib wheel python-kubernetes urllib3 graphviz hypothesis \
pyspark cloudpickle cuda-python=11.7.0
ENV GOSU_VERSION 1.10
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64/
# Install lightweight sudo (not bound to TTY)
RUN set -ex; \

View File

@ -24,7 +24,7 @@ RUN \
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=2.7.5-1 && \
export NCCL_VERSION=2.13.4-1 && \
apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages libnccl2=${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-dev=${NCCL_VERSION}+cuda${CUDA_SHORT}

View File

@ -4,7 +4,6 @@ ARG CUDA_VERSION_ARG
# Install all basic requirements
RUN \
rpm --erase gpg-pubkey-7fa2af80* && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/D42D0685.pub | sed '/^Version/d' \
> /etc/pki/rpm-gpg/RPM-GPG-KEY-NVIDIA && \
yum install -y epel-release centos-release-scl && \
@ -22,7 +21,7 @@ RUN \
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=2.7.3-1 && \
export NCCL_VERSION=2.13.4-1 && \
wget -nv -nc https://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
yum -y update && \

View File

@ -4,7 +4,6 @@ ARG CUDA_VERSION_ARG
# Install all basic requirements
RUN \
rpm --erase gpg-pubkey-7fa2af80* && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/D42D0685.pub | sed '/^Version/d' \
> /etc/pki/rpm-gpg/RPM-GPG-KEY-NVIDIA && \
yum install -y epel-release centos-release-scl && \
@ -25,12 +24,10 @@ RUN \
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=2.8.3-1 && \
wget -nv -nc https://developer.download.nvidia.com/compute/machine-learning/repos/rhel7/x86_64/nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
rpm -i nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm && \
export NCCL_VERSION=2.13.4-1 && \
yum-config-manager --add-repo http://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
yum -y update && \
yum install -y libnccl-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-devel-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-static-${NCCL_VERSION}+cuda${CUDA_SHORT} && \
rm -f nvidia-machine-learning-repo-rhel7-1.0.0-1.x86_64.rpm;
yum install -y libnccl-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-devel-${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-static-${NCCL_VERSION}+cuda${CUDA_SHORT}
ENV PATH=/opt/python/bin:/opt/maven/bin:$PATH
ENV CC=/opt/rh/devtoolset-8/root/usr/bin/gcc

View File

@ -18,7 +18,7 @@ RUN \
# NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html)
RUN \
export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \
export NCCL_VERSION=2.7.5-1 && \
export NCCL_VERSION=2.13.4-1 && \
apt-get update && \
apt-get install -y --allow-downgrades --allow-change-held-packages libnccl2=${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-dev=${NCCL_VERSION}+cuda${CUDA_SHORT}
@ -27,7 +27,7 @@ ENV PATH=/opt/python/bin:$PATH
# Create new Conda environment with RMM
RUN \
conda create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \
python=3.9 rmm=22.06* cudatoolkit=$CUDA_VERSION_ARG cmake
python=3.9 rmm=22.04* cudatoolkit=$CUDA_VERSION_ARG cmake
ENV GOSU_VERSION 1.10

View File

@ -29,13 +29,15 @@ if [[ "$platform_id" == macosx_* ]]; then
setup_env_var='CIBW_TARGET_OSX_ARM64=1' # extra flag to be passed to setup.py
export PYTHON_CROSSENV=1
export MACOSX_DEPLOYMENT_TARGET=12.0
OPENMP_URL="https://anaconda.org/conda-forge/llvm-openmp/11.1.0/download/osx-arm64/llvm-openmp-11.1.0-hf3c4609_1.tar.bz2"
#OPENMP_URL="https://anaconda.org/conda-forge/llvm-openmp/11.1.0/download/osx-arm64/llvm-openmp-11.1.0-hf3c4609_1.tar.bz2"
OPENMP_URL="https://xgboost-ci-jenkins-artifacts.s3.us-west-2.amazonaws.com/llvm-openmp-11.1.0-hf3c4609_1-osx-arm64.tar.bz2"
elif [[ "$platform_id" == macosx_x86_64 ]]; then
# MacOS, Intel
wheel_tag=macosx_10_15_x86_64.macosx_11_0_x86_64.macosx_12_0_x86_64
cpython_ver=37
export MACOSX_DEPLOYMENT_TARGET=10.13
OPENMP_URL="https://anaconda.org/conda-forge/llvm-openmp/11.1.0/download/osx-64/llvm-openmp-11.1.0-hda6cdc1_1.tar.bz2"
#OPENMP_URL="https://anaconda.org/conda-forge/llvm-openmp/11.1.0/download/osx-64/llvm-openmp-11.1.0-hda6cdc1_1.tar.bz2"
OPENMP_URL="https://xgboost-ci-jenkins-artifacts.s3.us-west-2.amazonaws.com/llvm-openmp-11.1.0-hda6cdc1_1-osx-64.tar.bz2"
else
echo "Platform not supported: $platform_id"
exit 3

View File

@ -30,15 +30,13 @@ dependencies:
- jsonschema
- boto3
- awscli
- numba
- llvmlite
- py-ubjson
- cffi
- pyarrow
- protobuf<=3.20
- protobuf
- pyspark>=3.3.0
- cloudpickle
- shap
- modin
- pip:
- shap
- ipython # required by shap at import time.
- sphinx_rtd_theme
- datatable
- modin[all]

View File

@ -20,9 +20,9 @@ else
fi
if [[ -n $CI_BUILD_UID ]] && [[ -n $CI_BUILD_GID ]]; then
groupadd -o -g "${CI_BUILD_GID}" "${CI_BUILD_GROUP}"
groupadd -o -g "${CI_BUILD_GID}" "${CI_BUILD_GROUP}" || true
useradd -o -m -g "${CI_BUILD_GID}" -u "${CI_BUILD_UID}" \
"${CI_BUILD_USER}"
"${CI_BUILD_USER}" || true
export HOME="/home/${CI_BUILD_USER}"
shopt -s dotglob
cp -r /root/* "$HOME/"

View File

@ -42,4 +42,4 @@ with cd(dirname):
filesize = os.path.getsize(new_name) / 1024 / 1024 # MB
msg = f"Limit of wheel size set by PyPI is exceeded. {new_name}: {filesize}"
assert filesize <= 200, msg
assert filesize <= 300, msg