Add support inference on SYCL devices (#9800)

---------

Co-authored-by: Dmitry Razdoburdin <>
Co-authored-by: Nikolay Petrov <nikolay.a.petrov@intel.com>
Co-authored-by: Alexandra <alexandra.epanchinzeva@intel.com>
This commit is contained in:
Dmitry Razdoburdin 2023-12-04 09:15:57 +01:00 committed by GitHub
parent 7196c9d95e
commit 381f1d3dc9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
31 changed files with 1369 additions and 1294 deletions

View File

@ -63,6 +63,45 @@ jobs:
cd build cd build
ctest --extra-verbose ctest --extra-verbose
gtest-cpu-sycl:
name: Test Google C++ unittest (CPU SYCL)
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
python-version: ["3.8"]
steps:
- uses: actions/checkout@e2f20e631ae6d7dd3b768f56a5d2af784dd54791 # v2.5.0
with:
submodules: 'true'
- uses: mamba-org/provision-with-micromamba@f347426e5745fe3dfc13ec5baf20496990d0281f # v14
with:
cache-downloads: true
cache-env: true
environment-name: linux_sycl_test
environment-file: tests/ci_build/conda_env/linux_sycl_test.yml
- name: Display Conda env
run: |
conda info
conda list
- name: Build and install XGBoost
shell: bash -l {0}
run: |
mkdir build
cd build
cmake .. -DGOOGLE_TEST=ON -DUSE_DMLC_GTEST=ON -DPLUGIN_SYCL=ON -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX
make -j$(nproc)
- name: Run gtest binary for SYCL
run: |
cd build
./testxgboost --gtest_filter=Sycl*
- name: Run gtest binary for non SYCL
run: |
cd build
./testxgboost --gtest_filter=-Sycl*
c-api-demo: c-api-demo:
name: Test installing XGBoost lib + building the C API demo name: Test installing XGBoost lib + building the C API demo
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}

View File

@ -256,6 +256,47 @@ jobs:
run: | run: |
pytest -s -v -rxXs --durations=0 ./tests/test_distributed/test_with_spark pytest -s -v -rxXs --durations=0 ./tests/test_distributed/test_with_spark
python-sycl-tests-on-ubuntu:
name: Test XGBoost Python package with SYCL on ${{ matrix.config.os }}
runs-on: ${{ matrix.config.os }}
timeout-minutes: 90
strategy:
matrix:
config:
- {os: ubuntu-latest, python-version: "3.8"}
steps:
- uses: actions/checkout@v2
with:
submodules: 'true'
- uses: mamba-org/provision-with-micromamba@f347426e5745fe3dfc13ec5baf20496990d0281f # v14
with:
cache-downloads: true
cache-env: true
environment-name: linux_sycl_test
environment-file: tests/ci_build/conda_env/linux_sycl_test.yml
- name: Display Conda env
run: |
conda info
conda list
- name: Build XGBoost on Ubuntu
run: |
mkdir build
cd build
cmake .. -DPLUGIN_SYCL=ON -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
make -j$(nproc)
- name: Install Python package
run: |
cd python-package
python --version
pip install -v .
- name: Test Python package
run: |
pytest -s -v -rxXs --durations=0 ./tests/python-sycl/
python-system-installation-on-ubuntu: python-system-installation-on-ubuntu:
name: Test XGBoost Python package System Installation on ${{ matrix.os }} name: Test XGBoost Python package System Installation on ${{ matrix.os }}
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}

View File

@ -1,4 +1,11 @@
cmake_minimum_required(VERSION 3.18 FATAL_ERROR) cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
if(PLUGIN_SYCL)
set(CMAKE_CXX_COMPILER "g++")
set(CMAKE_C_COMPILER "gcc")
string(REPLACE " -isystem ${CONDA_PREFIX}/include" "" CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}")
endif()
project(xgboost LANGUAGES CXX C VERSION 2.1.0) project(xgboost LANGUAGES CXX C VERSION 2.1.0)
include(cmake/Utils.cmake) include(cmake/Utils.cmake)
list(APPEND CMAKE_MODULE_PATH "${xgboost_SOURCE_DIR}/cmake/modules") list(APPEND CMAKE_MODULE_PATH "${xgboost_SOURCE_DIR}/cmake/modules")
@ -102,7 +109,7 @@ address, leak, undefined and thread.")
option(PLUGIN_RMM "Build with RAPIDS Memory Manager (RMM)" OFF) option(PLUGIN_RMM "Build with RAPIDS Memory Manager (RMM)" OFF)
option(PLUGIN_FEDERATED "Build with Federated Learning" OFF) option(PLUGIN_FEDERATED "Build with Federated Learning" OFF)
## TODO: 1. Add check if DPC++ compiler is used for building ## TODO: 1. Add check if DPC++ compiler is used for building
option(PLUGIN_UPDATER_ONEAPI "DPC++ updater" OFF) option(PLUGIN_SYCL "SYCL plugin" OFF)
option(ADD_PKGCONFIG "Add xgboost.pc into system." ON) option(ADD_PKGCONFIG "Add xgboost.pc into system." ON)
#-- Checks for building XGBoost #-- Checks for building XGBoost
@ -313,6 +320,15 @@ if(PLUGIN_RMM)
get_target_property(rmm_link_libs rmm::rmm INTERFACE_LINK_LIBRARIES) get_target_property(rmm_link_libs rmm::rmm INTERFACE_LINK_LIBRARIES)
endif() endif()
if(PLUGIN_SYCL)
set(CMAKE_CXX_LINK_EXECUTABLE
"icpx <FLAGS> <CMAKE_CXX_LINK_FLAGS> -qopenmp <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
set(CMAKE_CXX_CREATE_SHARED_LIBRARY
"icpx <CMAKE_SHARED_LIBRARY_CXX_FLAGS> -qopenmp <LANGUAGE_COMPILE_FLAGS> \
<CMAKE_SHARED_LIBRARY_CREATE_CXX_FLAGS> <SONAME_FLAG>,<TARGET_SONAME> \
-o <TARGET> <OBJECTS> <LINK_LIBRARIES>")
endif()
#-- library #-- library
if(BUILD_STATIC_LIB) if(BUILD_STATIC_LIB)
add_library(xgboost STATIC) add_library(xgboost STATIC)

View File

@ -250,10 +250,16 @@ struct Context : public XGBoostParameter<Context> {
default: default:
// Do not use the device name as this is likely an internal error, the name // Do not use the device name as this is likely an internal error, the name
// wouldn't be valid. // wouldn't be valid.
if (this->Device().IsSycl()) {
LOG(WARNING) << "The requested feature doesn't have SYCL specific implementation yet. "
<< "CPU implementation is used";
return cpu_fn();
} else {
LOG(FATAL) << "Unknown device type:" LOG(FATAL) << "Unknown device type:"
<< static_cast<std::underlying_type_t<DeviceOrd::Type>>(this->Device().device); << static_cast<std::underlying_type_t<DeviceOrd::Type>>(this->Device().device);
break; break;
} }
}
return std::invoke_result_t<CPUFn>(); return std::invoke_result_t<CPUFn>();
} }
@ -262,7 +268,6 @@ struct Context : public XGBoostParameter<Context> {
*/ */
template <typename CPUFn, typename CUDAFn, typename SYCLFn> template <typename CPUFn, typename CUDAFn, typename SYCLFn>
decltype(auto) DispatchDevice(CPUFn&& cpu_fn, CUDAFn&& cuda_fn, SYCLFn&& sycl_fn) const { decltype(auto) DispatchDevice(CPUFn&& cpu_fn, CUDAFn&& cuda_fn, SYCLFn&& sycl_fn) const {
static_assert(std::is_same_v<std::invoke_result_t<CPUFn>, std::invoke_result_t<CUDAFn>>);
static_assert(std::is_same_v<std::invoke_result_t<CPUFn>, std::invoke_result_t<SYCLFn>>); static_assert(std::is_same_v<std::invoke_result_t<CPUFn>, std::invoke_result_t<SYCLFn>>);
if (this->Device().IsSycl()) { if (this->Device().IsSycl()) {
return sycl_fn(); return sycl_fn();

View File

@ -92,7 +92,7 @@ class Predictor {
* \param out_predt Prediction vector to be initialized. * \param out_predt Prediction vector to be initialized.
* \param model Tree model used for prediction. * \param model Tree model used for prediction.
*/ */
void InitOutPredictions(const MetaInfo& info, HostDeviceVector<bst_float>* out_predt, virtual void InitOutPredictions(const MetaInfo& info, HostDeviceVector<bst_float>* out_predt,
const gbm::GBTreeModel& model) const; const gbm::GBTreeModel& model) const;
/** /**

View File

@ -1,27 +1,29 @@
if(PLUGIN_UPDATER_ONEAPI) if(PLUGIN_SYCL)
add_library(oneapi_plugin OBJECT set(CMAKE_CXX_COMPILER "icpx")
${xgboost_SOURCE_DIR}/plugin/updater_oneapi/regression_obj_oneapi.cc add_library(plugin_sycl OBJECT
${xgboost_SOURCE_DIR}/plugin/updater_oneapi/predictor_oneapi.cc) ${xgboost_SOURCE_DIR}/plugin/sycl/device_manager.cc
target_include_directories(oneapi_plugin ${xgboost_SOURCE_DIR}/plugin/sycl/predictor/predictor.cc)
target_include_directories(plugin_sycl
PRIVATE PRIVATE
${xgboost_SOURCE_DIR}/include ${xgboost_SOURCE_DIR}/include
${xgboost_SOURCE_DIR}/dmlc-core/include ${xgboost_SOURCE_DIR}/dmlc-core/include
${xgboost_SOURCE_DIR}/rabit/include) ${xgboost_SOURCE_DIR}/rabit/include)
target_compile_definitions(oneapi_plugin PUBLIC -DXGBOOST_USE_ONEAPI=1) target_compile_definitions(plugin_sycl PUBLIC -DXGBOOST_USE_SYCL=1)
target_link_libraries(oneapi_plugin PUBLIC -fsycl) target_link_libraries(plugin_sycl PUBLIC -fsycl)
set_target_properties(oneapi_plugin PROPERTIES set_target_properties(plugin_sycl PROPERTIES
COMPILE_FLAGS -fsycl COMPILE_FLAGS -fsycl
CXX_STANDARD 17 CXX_STANDARD 17
CXX_STANDARD_REQUIRED ON CXX_STANDARD_REQUIRED ON
POSITION_INDEPENDENT_CODE ON) POSITION_INDEPENDENT_CODE ON)
if(USE_OPENMP) if(USE_OPENMP)
find_package(OpenMP REQUIRED) find_package(OpenMP REQUIRED)
target_link_libraries(oneapi_plugin PUBLIC OpenMP::OpenMP_CXX) set_target_properties(plugin_sycl PROPERTIES
COMPILE_FLAGS "-fsycl -qopenmp")
endif() endif()
# Get compilation and link flags of oneapi_plugin and propagate to objxgboost # Get compilation and link flags of plugin_sycl and propagate to objxgboost
target_link_libraries(objxgboost PUBLIC oneapi_plugin) target_link_libraries(objxgboost PUBLIC plugin_sycl)
# Add all objects of oneapi_plugin to objxgboost # Add all objects of plugin_sycl to objxgboost
target_sources(objxgboost INTERFACE $<TARGET_OBJECTS:oneapi_plugin>) target_sources(objxgboost INTERFACE $<TARGET_OBJECTS:plugin_sycl>)
endif() endif()
# Add the Federate Learning plugin if enabled. # Add the Federate Learning plugin if enabled.

40
plugin/sycl/README.md Executable file
View File

@ -0,0 +1,40 @@
<!--
******************************************************************************
* Copyright by Contributors 2017-2023
*******************************************************************************/-->
# SYCL-based Algorithm for Tree Construction
This plugin adds support of SYCL programming model for prediction algorithms to XGBoost.
## Usage
Specify the 'device' parameter as described in the table below to offload model training and inference on SYCL device.
### Algorithms
| device | Description |
| --- | --- |
sycl | use default sycl device |
sycl:gpu | use default sycl gpu |
sycl:cpu | use default sycl cpu |
sycl:gpu:N | use sycl gpu number N |
sycl:cpu:N | use sycl cpu number N |
Python example:
```python
param['device'] = 'sycl:gpu:0'
```
Note: 'sycl:cpu' devices have full functional support but can't provide good enough performance. We recommend use 'sycl:cpu' devices only for test purposes.
Note: if device is specified to be 'sycl', device type will be automatically chosen. In case the system has both sycl GPU and sycl CPU, GPU will on use.
## Dependencies
To build and use the plugin, install [Intel® oneAPI DPC++/C++ Compiler](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html).
See also [Intel® oneAPI Programming Guide](https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2024-0/overview.html).
## Build
From the ``xgboost`` directory, run:
```bash
$ mkdir build
$ cd build
$ cmake .. -DPLUGIN_SYCL=ON
$ make -j
```

256
plugin/sycl/data.h Normal file
View File

@ -0,0 +1,256 @@
/*!
* Copyright by Contributors 2017-2023
*/
#ifndef PLUGIN_SYCL_DATA_H_
#define PLUGIN_SYCL_DATA_H_
#include <cstddef>
#include <limits>
#include <mutex>
#include <vector>
#include <memory>
#include <algorithm>
#include "xgboost/base.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include "xgboost/data.h"
#pragma GCC diagnostic pop
#include "xgboost/logging.h"
#include "xgboost/host_device_vector.h"
#include "../../src/common/threading_utils.h"
#include "CL/sycl.hpp"
namespace xgboost {
namespace sycl {
enum class MemoryType { shared, on_device};
template <typename T>
class USMDeleter {
public:
explicit USMDeleter(::sycl::queue qu) : qu_(qu) {}
void operator()(T* data) const {
::sycl::free(data, qu_);
}
private:
::sycl::queue qu_;
};
template <typename T, MemoryType memory_type = MemoryType::shared>
class USMVector {
static_assert(std::is_standard_layout<T>::value, "USMVector admits only POD types");
std::shared_ptr<T> allocate_memory_(::sycl::queue* qu, size_t size) {
if constexpr (memory_type == MemoryType::shared) {
return std::shared_ptr<T>(::sycl::malloc_shared<T>(size_, *qu), USMDeleter<T>(*qu));
} else {
return std::shared_ptr<T>(::sycl::malloc_device<T>(size_, *qu), USMDeleter<T>(*qu));
}
}
void copy_vector_to_memory_(::sycl::queue* qu, const std::vector<T> &vec) {
if constexpr (memory_type == MemoryType::shared) {
std::copy(vec.begin(), vec.end(), data_.get());
} else {
qu->memcpy(data_.get(), vec.data(), size_ * sizeof(T));
}
}
public:
USMVector() : size_(0), capacity_(0), data_(nullptr) {}
USMVector(::sycl::queue& qu, size_t size) : size_(size), capacity_(size) {
data_ = allocate_memory_(qu, size_);
}
USMVector(::sycl::queue& qu, size_t size, T v) : size_(size), capacity_(size) {
data_ = allocate_memory_(qu, size_);
qu.fill(data_.get(), v, size_).wait();
}
USMVector(::sycl::queue* qu, const std::vector<T> &vec) {
size_ = vec.size();
capacity_ = size_;
data_ = allocate_memory_(qu, size_);
copy_vector_to_memory_(qu, vec);
}
~USMVector() {
}
USMVector<T>& operator=(const USMVector<T>& other) {
size_ = other.size_;
capacity_ = other.capacity_;
data_ = other.data_;
return *this;
}
T* Data() { return data_.get(); }
const T* DataConst() const { return data_.get(); }
size_t Size() const { return size_; }
size_t Capacity() const { return capacity_; }
T& operator[] (size_t i) { return data_.get()[i]; }
const T& operator[] (size_t i) const { return data_.get()[i]; }
T* Begin () const { return data_.get(); }
T* End () const { return data_.get() + size_; }
bool Empty() const { return (size_ == 0); }
void Clear() {
data_.reset();
size_ = 0;
capacity_ = 0;
}
void Resize(::sycl::queue* qu, size_t size_new) {
if (size_new <= capacity_) {
size_ = size_new;
} else {
size_t size_old = size_;
auto data_old = data_;
size_ = size_new;
capacity_ = size_new;
data_ = allocate_memory_(qu, size_);;
if (size_old > 0) {
qu->memcpy(data_.get(), data_old.get(), sizeof(T) * size_old).wait();
}
}
}
void Resize(::sycl::queue* qu, size_t size_new, T v) {
if (size_new <= size_) {
size_ = size_new;
} else if (size_new <= capacity_) {
qu->fill(data_.get() + size_, v, size_new - size_).wait();
size_ = size_new;
} else {
size_t size_old = size_;
auto data_old = data_;
size_ = size_new;
capacity_ = size_new;
data_ = allocate_memory_(qu, size_);
if (size_old > 0) {
qu->memcpy(data_.get(), data_old.get(), sizeof(T) * size_old).wait();
}
qu->fill(data_.get() + size_old, v, size_new - size_old).wait();
}
}
::sycl::event ResizeAsync(::sycl::queue* qu, size_t size_new, T v) {
if (size_new <= size_) {
size_ = size_new;
return ::sycl::event();
} else if (size_new <= capacity_) {
auto event = qu->fill(data_.get() + size_, v, size_new - size_);
size_ = size_new;
return event;
} else {
size_t size_old = size_;
auto data_old = data_;
size_ = size_new;
capacity_ = size_new;
data_ = allocate_memory_(qu, size_);
::sycl::event event;
if (size_old > 0) {
event = qu->memcpy(data_.get(), data_old.get(), sizeof(T) * size_old);
}
return qu->fill(data_.get() + size_old, v, size_new - size_old, event);
}
}
::sycl::event ResizeAndFill(::sycl::queue* qu, size_t size_new, int v) {
if (size_new <= size_) {
size_ = size_new;
return qu->memset(data_.get(), v, size_new * sizeof(T));
} else if (size_new <= capacity_) {
size_ = size_new;
return qu->memset(data_.get(), v, size_new * sizeof(T));
} else {
size_t size_old = size_;
auto data_old = data_;
size_ = size_new;
capacity_ = size_new;
data_ = allocate_memory_(qu, size_);
return qu->memset(data_.get(), v, size_new * sizeof(T));
}
}
::sycl::event Fill(::sycl::queue* qu, T v) {
return qu->fill(data_.get(), v, size_);
}
void Init(::sycl::queue* qu, const std::vector<T> &vec) {
size_ = vec.size();
capacity_ = size_;
data_ = allocate_memory_(qu, size_);
copy_vector_to_memory_(qu, vec);
}
using value_type = T; // NOLINT
private:
size_t size_;
size_t capacity_;
std::shared_ptr<T> data_;
};
/* Wrapper for DMatrix which stores all batches in a single USM buffer */
struct DeviceMatrix {
DMatrix* p_mat; // Pointer to the original matrix on the host
::sycl::queue qu_;
USMVector<size_t> row_ptr;
USMVector<Entry> data;
size_t total_offset;
DeviceMatrix(::sycl::queue qu, DMatrix* dmat) : p_mat(dmat), qu_(qu) {
size_t num_row = 0;
size_t num_nonzero = 0;
for (auto &batch : dmat->GetBatches<SparsePage>()) {
const auto& data_vec = batch.data.HostVector();
const auto& offset_vec = batch.offset.HostVector();
num_nonzero += data_vec.size();
num_row += batch.Size();
}
row_ptr.Resize(&qu_, num_row + 1);
data.Resize(&qu_, num_nonzero);
size_t data_offset = 0;
for (auto &batch : dmat->GetBatches<SparsePage>()) {
const auto& data_vec = batch.data.HostVector();
const auto& offset_vec = batch.offset.HostVector();
size_t batch_size = batch.Size();
if (batch_size > 0) {
std::copy(offset_vec.data(), offset_vec.data() + batch_size,
row_ptr.Data() + batch.base_rowid);
if (batch.base_rowid > 0) {
for (size_t i = 0; i < batch_size; i++)
row_ptr[i + batch.base_rowid] += batch.base_rowid;
}
std::copy(data_vec.data(), data_vec.data() + offset_vec[batch_size],
data.Data() + data_offset);
data_offset += offset_vec[batch_size];
}
}
row_ptr[num_row] = data_offset;
total_offset = data_offset;
}
~DeviceMatrix() {
}
};
} // namespace sycl
} // namespace xgboost
#endif // PLUGIN_SYCL_DATA_H_

View File

@ -0,0 +1,124 @@
/*!
* Copyright 2017-2023 by Contributors
* \file device_manager.cc
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include <rabit/rabit.h>
#pragma GCC diagnostic pop
#include "../sycl/device_manager.h"
namespace xgboost {
namespace sycl {
::sycl::device DeviceManager::GetDevice(const DeviceOrd& device_spec) const {
if (!device_spec.IsSycl()) {
LOG(WARNING) << "Sycl kernel is executed with non-sycl context: "
<< device_spec.Name() << ". "
<< "Default sycl device_selector will be used.";
}
bool not_use_default_selector = (device_spec.ordinal != kDefaultOrdinal) ||
(rabit::IsDistributed());
if (not_use_default_selector) {
DeviceRegister& device_register = GetDevicesRegister();
const int device_idx = rabit::IsDistributed() ? rabit::GetRank() : device_spec.ordinal;
if (device_spec.IsSyclDefault()) {
auto& devices = device_register.devices;
CHECK_LT(device_idx, devices.size());
return devices[device_idx];
} else if (device_spec.IsSyclCPU()) {
auto& cpu_devices = device_register.cpu_devices;
CHECK_LT(device_idx, cpu_devices.size());
return cpu_devices[device_idx];
} else {
auto& gpu_devices = device_register.gpu_devices;
CHECK_LT(device_idx, gpu_devices.size());
return gpu_devices[device_idx];
}
} else {
if (device_spec.IsSyclCPU()) {
return ::sycl::device(::sycl::cpu_selector_v);
} else if (device_spec.IsSyclGPU()) {
return ::sycl::device(::sycl::gpu_selector_v);
} else {
return ::sycl::device(::sycl::default_selector_v);
}
}
}
::sycl::queue DeviceManager::GetQueue(const DeviceOrd& device_spec) const {
if (!device_spec.IsSycl()) {
LOG(WARNING) << "Sycl kernel is executed with non-sycl context: "
<< device_spec.Name() << ". "
<< "Default sycl device_selector will be used.";
}
QueueRegister_t& queue_register = GetQueueRegister();
if (queue_register.count(device_spec.Name()) > 0) {
return queue_register.at(device_spec.Name());
}
bool not_use_default_selector = (device_spec.ordinal != kDefaultOrdinal) ||
(rabit::IsDistributed());
std::lock_guard<std::mutex> guard(queue_registering_mutex);
if (not_use_default_selector) {
DeviceRegister& device_register = GetDevicesRegister();
const int device_idx = rabit::IsDistributed() ? rabit::GetRank() : device_spec.ordinal;
if (device_spec.IsSyclDefault()) {
auto& devices = device_register.devices;
CHECK_LT(device_idx, devices.size());
queue_register[device_spec.Name()] = ::sycl::queue(devices[device_idx]);
} else if (device_spec.IsSyclCPU()) {
auto& cpu_devices = device_register.cpu_devices;
CHECK_LT(device_idx, cpu_devices.size());
queue_register[device_spec.Name()] = ::sycl::queue(cpu_devices[device_idx]);;
} else if (device_spec.IsSyclGPU()) {
auto& gpu_devices = device_register.gpu_devices;
CHECK_LT(device_idx, gpu_devices.size());
queue_register[device_spec.Name()] = ::sycl::queue(gpu_devices[device_idx]);
}
} else {
if (device_spec.IsSyclCPU()) {
queue_register[device_spec.Name()] = ::sycl::queue(::sycl::cpu_selector_v);
} else if (device_spec.IsSyclGPU()) {
queue_register[device_spec.Name()] = ::sycl::queue(::sycl::gpu_selector_v);
} else {
queue_register[device_spec.Name()] = ::sycl::queue(::sycl::default_selector_v);
}
}
return queue_register.at(device_spec.Name());
}
DeviceManager::DeviceRegister& DeviceManager::GetDevicesRegister() const {
static DeviceRegister device_register;
if (device_register.devices.size() == 0) {
std::lock_guard<std::mutex> guard(device_registering_mutex);
std::vector<::sycl::device> devices = ::sycl::device::get_devices();
for (size_t i = 0; i < devices.size(); i++) {
LOG(INFO) << "device_index = " << i << ", name = "
<< devices[i].get_info<::sycl::info::device::name>();
}
for (size_t i = 0; i < devices.size(); i++) {
device_register.devices.push_back(devices[i]);
if (devices[i].is_cpu()) {
device_register.cpu_devices.push_back(devices[i]);
} else if (devices[i].is_gpu()) {
device_register.gpu_devices.push_back(devices[i]);
}
}
}
return device_register;
}
DeviceManager::QueueRegister_t& DeviceManager::GetQueueRegister() const {
static QueueRegister_t queue_register;
return queue_register;
}
} // namespace sycl
} // namespace xgboost

View File

@ -0,0 +1,47 @@
/*!
* Copyright 2017-2023 by Contributors
* \file device_manager.h
*/
#ifndef PLUGIN_SYCL_DEVICE_MANAGER_H_
#define PLUGIN_SYCL_DEVICE_MANAGER_H_
#include <vector>
#include <mutex>
#include <string>
#include <unordered_map>
#include <CL/sycl.hpp>
#include "xgboost/context.h"
namespace xgboost {
namespace sycl {
class DeviceManager {
public:
::sycl::queue GetQueue(const DeviceOrd& device_spec) const;
::sycl::device GetDevice(const DeviceOrd& device_spec) const;
private:
using QueueRegister_t = std::unordered_map<std::string, ::sycl::queue>;
constexpr static int kDefaultOrdinal = -1;
struct DeviceRegister {
std::vector<::sycl::device> devices;
std::vector<::sycl::device> cpu_devices;
std::vector<::sycl::device> gpu_devices;
};
QueueRegister_t& GetQueueRegister() const;
DeviceRegister& GetDevicesRegister() const;
mutable std::mutex queue_registering_mutex;
mutable std::mutex device_registering_mutex;
};
} // namespace sycl
} // namespace xgboost
#endif // PLUGIN_SYCL_DEVICE_MANAGER_H_

View File

@ -0,0 +1,342 @@
/*!
* Copyright by Contributors 2017-2023
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include <rabit/rabit.h>
#pragma GCC diagnostic pop
#include <cstddef>
#include <limits>
#include <mutex>
#include <CL/sycl.hpp>
#include "../data.h"
#include "dmlc/registry.h"
#include "xgboost/tree_model.h"
#include "xgboost/predictor.h"
#include "xgboost/tree_updater.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../../src/data/adapter.h"
#pragma GCC diagnostic pop
#include "../../src/common/math.h"
#include "../../src/gbm/gbtree_model.h"
#include "../device_manager.h"
namespace xgboost {
namespace sycl {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(predictor_sycl);
/* Wrapper for descriptor of a tree node */
struct DeviceNode {
DeviceNode()
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
union NodeValue {
float leaf_weight;
float fvalue;
};
int fidx;
int left_child_idx;
int right_child_idx;
NodeValue val;
explicit DeviceNode(const RegTree::Node& n) {
this->left_child_idx = n.LeftChild();
this->right_child_idx = n.RightChild();
this->fidx = n.SplitIndex();
if (n.DefaultLeft()) {
fidx |= (1U << 31);
}
if (n.IsLeaf()) {
this->val.leaf_weight = n.LeafValue();
} else {
this->val.fvalue = n.SplitCond();
}
}
bool IsLeaf() const { return left_child_idx == -1; }
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
bool MissingLeft() const { return (fidx >> 31) != 0; }
int MissingIdx() const {
if (MissingLeft()) {
return this->left_child_idx;
} else {
return this->right_child_idx;
}
}
float GetFvalue() const { return val.fvalue; }
float GetWeight() const { return val.leaf_weight; }
};
/* SYCL implementation of a device model,
* storing tree structure in USM buffers to provide access from device kernels
*/
class DeviceModel {
public:
::sycl::queue qu_;
USMVector<DeviceNode> nodes_;
USMVector<size_t> tree_segments_;
USMVector<int> tree_group_;
size_t tree_beg_;
size_t tree_end_;
int num_group_;
DeviceModel() {}
~DeviceModel() {}
void Init(::sycl::queue qu, const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end) {
qu_ = qu;
tree_segments_.Resize(&qu_, (tree_end - tree_begin) + 1);
int sum = 0;
tree_segments_[0] = sum;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
if (model.trees[tree_idx]->HasCategoricalSplit()) {
LOG(FATAL) << "Categorical features are not yet supported by sycl";
}
sum += model.trees[tree_idx]->GetNodes().size();
tree_segments_[tree_idx - tree_begin + 1] = sum;
}
nodes_.Resize(&qu_, sum);
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
auto& src_nodes = model.trees[tree_idx]->GetNodes();
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++)
nodes_[node_idx + tree_segments_[tree_idx - tree_begin]] =
static_cast<DeviceNode>(src_nodes[node_idx]);
}
tree_group_.Resize(&qu_, model.tree_info.size());
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
tree_group_[tree_idx] = model.tree_info[tree_idx];
tree_beg_ = tree_begin;
tree_end_ = tree_end;
num_group_ = model.learner_model_param->num_output_group;
}
};
float GetFvalue(int ridx, int fidx, Entry* data, size_t* row_ptr, bool* is_missing) {
// Binary search
auto begin_ptr = data + row_ptr[ridx];
auto end_ptr = data + row_ptr[ridx + 1];
Entry* previous_middle = nullptr;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
*is_missing = false;
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
*is_missing = true;
return 0.0;
}
float GetLeafWeight(int ridx, const DeviceNode* tree, Entry* data, size_t* row_ptr) {
DeviceNode n = tree[0];
int node_id = 0;
bool is_missing;
while (!n.IsLeaf()) {
float fvalue = GetFvalue(ridx, n.GetFidx(), data, row_ptr, &is_missing);
// Missing value
if (is_missing) {
n = tree[n.MissingIdx()];
} else {
if (fvalue < n.GetFvalue()) {
node_id = n.left_child_idx;
n = tree[n.left_child_idx];
} else {
node_id = n.right_child_idx;
n = tree[n.right_child_idx];
}
}
}
return n.GetWeight();
}
void DevicePredictInternal(::sycl::queue qu,
sycl::DeviceMatrix* dmat,
HostDeviceVector<float>* out_preds,
const gbm::GBTreeModel& model,
size_t tree_begin,
size_t tree_end) {
if (tree_end - tree_begin == 0) return;
if (out_preds->HostVector().size() == 0) return;
DeviceModel device_model;
device_model.Init(qu, model, tree_begin, tree_end);
auto& out_preds_vec = out_preds->HostVector();
DeviceNode* nodes = device_model.nodes_.Data();
::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
size_t* tree_segments = device_model.tree_segments_.Data();
int* tree_group = device_model.tree_group_.Data();
size_t* row_ptr = dmat->row_ptr.Data();
Entry* data = dmat->data.Data();
int num_features = dmat->p_mat->Info().num_col_;
int num_rows = dmat->row_ptr.Size() - 1;
int num_group = model.learner_model_param->num_output_group;
qu.submit([&](::sycl::handler& cgh) {
auto out_predictions = out_preds_buf.template get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(num_rows), [=](::sycl::id<1> pid) {
int global_idx = pid[0];
if (global_idx >= num_rows) return;
if (num_group == 1) {
float sum = 0.0;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
sum += GetLeafWeight(global_idx, tree, data, row_ptr);
}
out_predictions[global_idx] += sum;
} else {
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
int out_prediction_idx = global_idx * num_group + tree_group[tree_idx];
out_predictions[out_prediction_idx] += GetLeafWeight(global_idx, tree, data, row_ptr);
}
}
});
}).wait();
}
class Predictor : public xgboost::Predictor {
protected:
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const override {
CHECK_NE(model.learner_model_param->num_output_group, 0);
size_t n = model.learner_model_param->num_output_group * info.num_row_;
const auto& base_margin = info.base_margin_.Data()->HostVector();
out_preds->Resize(n);
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
if (base_margin.size() == n) {
CHECK_EQ(out_preds->Size(), n);
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
} else {
auto base_score = model.learner_model_param->BaseScore(ctx_)(0);
if (!base_margin.empty()) {
std::ostringstream oss;
oss << "Ignoring the base margin, since it has incorrect length. "
<< "The base margin must be an array of length ";
if (model.learner_model_param->num_output_group > 1) {
oss << "[num_class] * [number of data points], i.e. "
<< model.learner_model_param->num_output_group << " * " << info.num_row_
<< " = " << n << ". ";
} else {
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
}
oss << "Instead, all data points will use "
<< "base_score = " << base_score;
LOG(WARNING) << oss.str();
}
std::fill(out_preds_h.begin(), out_preds_h.end(), base_score);
}
}
public:
explicit Predictor(Context const* context) :
xgboost::Predictor::Predictor{context},
cpu_predictor(xgboost::Predictor::Create("cpu_predictor", context)) {}
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
const gbm::GBTreeModel &model, uint32_t tree_begin,
uint32_t tree_end = 0) const override {
::sycl::queue qu = device_manager.GetQueue(ctx_->Device());
// TODO(razdoburdin): remove temporary workaround after cache fix
sycl::DeviceMatrix device_matrix(qu, dmat);
auto* out_preds = &predts->predictions;
if (tree_end == 0) {
tree_end = model.trees.size();
}
if (tree_begin < tree_end) {
DevicePredictInternal(qu, &device_matrix, out_preds, model, tree_begin, tree_end);
}
}
bool InplacePredict(std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds, uint32_t tree_begin,
unsigned tree_end) const override {
LOG(WARNING) << "InplacePredict is not yet implemented for SYCL. CPU Predictor is used.";
return cpu_predictor->InplacePredict(p_m, model, missing, out_preds, tree_begin, tree_end);
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit,
bool is_column_split) const override {
LOG(WARNING) << "PredictInstance is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit, is_column_split);
}
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
LOG(WARNING) << "PredictLeaf is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
}
void PredictContribution(DMatrix* p_fmat, HostDeviceVector<float>* out_contribs,
const gbm::GBTreeModel& model, uint32_t ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) const override {
LOG(WARNING) << "PredictContribution is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights,
approximate, condition, condition_feature);
}
void PredictInteractionContributions(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate) const override {
LOG(WARNING) << "PredictInteractionContributions is not yet implemented for SYCL. "
<< "CPU Predictor is used.";
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit,
tree_weights, approximate);
}
private:
DeviceManager device_manager;
std::unique_ptr<xgboost::Predictor> cpu_predictor;
};
XGBOOST_REGISTER_PREDICTOR(Predictor, "sycl_predictor")
.describe("Make predictions using SYCL.")
.set_body([](Context const* ctx) { return new Predictor(ctx); });
} // namespace predictor
} // namespace sycl
} // namespace xgboost

View File

@ -1,42 +0,0 @@
# DPC++-based Algorithm for Tree Construction
This plugin adds support of OneAPI programming model for tree construction and prediction algorithms to XGBoost.
## Usage
Specify the 'objective' parameter as one of the following options to offload computation of objective function on OneAPI device.
### Algorithms
| objective | Description |
| --- | --- |
reg:squarederror_oneapi | regression with squared loss |
reg:squaredlogerror_oneapi | regression with root mean squared logarithmic loss |
reg:logistic_oneapi | logistic regression for probability regression task |
binary:logistic_oneapi | logistic regression for binary classification task |
binary:logitraw_oneapi | logistic regression for classification, output score before logistic transformation |
Specify the 'predictor' parameter as one of the following options to offload prediction stage on OneAPI device.
### Algorithms
| predictor | Description |
| --- | --- |
predictor_oneapi | prediction using OneAPI device |
Please note that parameter names are not finalized and can be changed during further integration of OneAPI support.
Python example:
```python
param['predictor'] = 'predictor_oneapi'
param['objective'] = 'reg:squarederror_oneapi'
```
## Dependencies
Building the plugin requires Data Parallel C++ Compiler (https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html)
## Build
From the command line on Linux starting from the xgboost directory:
```bash
$ mkdir build
$ cd build
$ EXPORT CXX=dpcpp && cmake .. -DPLUGIN_UPDATER_ONEAPI=ON
$ make -j
```

View File

@ -1,447 +0,0 @@
/*!
* Copyright by Contributors 2017-2020
*/
#include <any> // for any
#include <cstddef>
#include <limits>
#include <mutex>
#include "../../src/common/math.h"
#include "../../src/data/adapter.h"
#include "../../src/gbm/gbtree_model.h"
#include "CL/sycl.hpp"
#include "xgboost/base.h"
#include "xgboost/data.h"
#include "xgboost/host_device_vector.h"
#include "xgboost/logging.h"
#include "xgboost/predictor.h"
#include "xgboost/tree_model.h"
#include "xgboost/tree_updater.h"
namespace xgboost {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(predictor_oneapi);
/*! \brief Element from a sparse vector */
struct EntryOneAPI {
/*! \brief feature index */
bst_feature_t index;
/*! \brief feature value */
bst_float fvalue;
/*! \brief default constructor */
EntryOneAPI() = default;
/*!
* \brief constructor with index and value
* \param index The feature or row index.
* \param fvalue The feature value.
*/
EntryOneAPI(bst_feature_t index, bst_float fvalue) : index(index), fvalue(fvalue) {}
EntryOneAPI(const Entry& entry) : index(entry.index), fvalue(entry.fvalue) {}
/*! \brief reversely compare feature values */
inline static bool CmpValue(const EntryOneAPI& a, const EntryOneAPI& b) {
return a.fvalue < b.fvalue;
}
inline bool operator==(const EntryOneAPI& other) const {
return (this->index == other.index && this->fvalue == other.fvalue);
}
};
struct DeviceMatrixOneAPI {
DMatrix* p_mat; // Pointer to the original matrix on the host
cl::sycl::queue qu_;
size_t* row_ptr;
size_t row_ptr_size;
EntryOneAPI* data;
DeviceMatrixOneAPI(DMatrix* dmat, cl::sycl::queue qu) : p_mat(dmat), qu_(qu) {
size_t num_row = 0;
size_t num_nonzero = 0;
for (auto &batch : dmat->GetBatches<SparsePage>()) {
const auto& data_vec = batch.data.HostVector();
const auto& offset_vec = batch.offset.HostVector();
num_nonzero += data_vec.size();
num_row += batch.Size();
}
row_ptr = cl::sycl::malloc_shared<size_t>(num_row + 1, qu_);
data = cl::sycl::malloc_shared<EntryOneAPI>(num_nonzero, qu_);
size_t data_offset = 0;
for (auto &batch : dmat->GetBatches<SparsePage>()) {
const auto& data_vec = batch.data.HostVector();
const auto& offset_vec = batch.offset.HostVector();
size_t batch_size = batch.Size();
if (batch_size > 0) {
std::copy(offset_vec.data(), offset_vec.data() + batch_size,
row_ptr + batch.base_rowid);
if (batch.base_rowid > 0) {
for(size_t i = 0; i < batch_size; i++)
row_ptr[i + batch.base_rowid] += batch.base_rowid;
}
std::copy(data_vec.data(), data_vec.data() + offset_vec[batch_size],
data + data_offset);
data_offset += offset_vec[batch_size];
}
}
row_ptr[num_row] = data_offset;
row_ptr_size = num_row + 1;
}
~DeviceMatrixOneAPI() {
if (row_ptr) {
cl::sycl::free(row_ptr, qu_);
}
if (data) {
cl::sycl::free(data, qu_);
}
}
};
struct DeviceNodeOneAPI {
DeviceNodeOneAPI()
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
union NodeValue {
float leaf_weight;
float fvalue;
};
int fidx;
int left_child_idx;
int right_child_idx;
NodeValue val;
DeviceNodeOneAPI(const RegTree::Node& n) { // NOLINT
this->left_child_idx = n.LeftChild();
this->right_child_idx = n.RightChild();
this->fidx = n.SplitIndex();
if (n.DefaultLeft()) {
fidx |= (1U << 31);
}
if (n.IsLeaf()) {
this->val.leaf_weight = n.LeafValue();
} else {
this->val.fvalue = n.SplitCond();
}
}
bool IsLeaf() const { return left_child_idx == -1; }
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
bool MissingLeft() const { return (fidx >> 31) != 0; }
int MissingIdx() const {
if (MissingLeft()) {
return this->left_child_idx;
} else {
return this->right_child_idx;
}
}
float GetFvalue() const { return val.fvalue; }
float GetWeight() const { return val.leaf_weight; }
};
class DeviceModelOneAPI {
public:
cl::sycl::queue qu_;
DeviceNodeOneAPI* nodes;
size_t* tree_segments;
int* tree_group;
size_t tree_beg_;
size_t tree_end_;
int num_group;
DeviceModelOneAPI() : nodes(nullptr), tree_segments(nullptr), tree_group(nullptr) {}
~DeviceModelOneAPI() {
Reset();
}
void Reset() {
if (nodes)
cl::sycl::free(nodes, qu_);
if (tree_segments)
cl::sycl::free(tree_segments, qu_);
if (tree_group)
cl::sycl::free(tree_group, qu_);
}
void Init(const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end, cl::sycl::queue qu) {
qu_ = qu;
CHECK_EQ(model.param.size_leaf_vector, 0);
Reset();
tree_segments = cl::sycl::malloc_shared<size_t>((tree_end - tree_begin) + 1, qu_);
int sum = 0;
tree_segments[0] = sum;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
sum += model.trees[tree_idx]->GetNodes().size();
tree_segments[tree_idx - tree_begin + 1] = sum;
}
nodes = cl::sycl::malloc_shared<DeviceNodeOneAPI>(sum, qu_);
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
auto& src_nodes = model.trees[tree_idx]->GetNodes();
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++)
nodes[node_idx + tree_segments[tree_idx - tree_begin]] = src_nodes[node_idx];
}
tree_group = cl::sycl::malloc_shared<int>(model.tree_info.size(), qu_);
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
tree_group[tree_idx] = model.tree_info[tree_idx];
tree_beg_ = tree_begin;
tree_end_ = tree_end;
num_group = model.learner_model_param->num_output_group;
}
};
float GetFvalue(int ridx, int fidx, EntryOneAPI* data, size_t* row_ptr, bool& is_missing) {
// Binary search
auto begin_ptr = data + row_ptr[ridx];
auto end_ptr = data + row_ptr[ridx + 1];
EntryOneAPI* previous_middle = nullptr;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
is_missing = false;
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
is_missing = true;
return 0.0;
}
float GetLeafWeight(int ridx, const DeviceNodeOneAPI* tree, EntryOneAPI* data, size_t* row_ptr) {
DeviceNodeOneAPI n = tree[0];
int node_id = 0;
bool is_missing;
while (!n.IsLeaf()) {
float fvalue = GetFvalue(ridx, n.GetFidx(), data, row_ptr, is_missing);
// Missing value
if (is_missing) {
n = tree[n.MissingIdx()];
} else {
if (fvalue < n.GetFvalue()) {
node_id = n.left_child_idx;
n = tree[n.left_child_idx];
} else {
node_id = n.right_child_idx;
n = tree[n.right_child_idx];
}
}
}
return n.GetWeight();
}
class PredictorOneAPI : public Predictor {
protected:
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const {
CHECK_NE(model.learner_model_param->num_output_group, 0);
size_t n = model.learner_model_param->num_output_group * info.num_row_;
const auto& base_margin = info.base_margin_.HostVector();
out_preds->Resize(n);
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
if (base_margin.size() == n) {
CHECK_EQ(out_preds->Size(), n);
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
} else {
if (!base_margin.empty()) {
std::ostringstream oss;
oss << "Ignoring the base margin, since it has incorrect length. "
<< "The base margin must be an array of length ";
if (model.learner_model_param->num_output_group > 1) {
oss << "[num_class] * [number of data points], i.e. "
<< model.learner_model_param->num_output_group << " * " << info.num_row_
<< " = " << n << ". ";
} else {
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
}
oss << "Instead, all data points will use "
<< "base_score = " << model.learner_model_param->base_score;
LOG(WARNING) << oss.str();
}
std::fill(out_preds_h.begin(), out_preds_h.end(),
model.learner_model_param->base_score);
}
}
void DevicePredictInternal(DeviceMatrixOneAPI* dmat, HostDeviceVector<float>* out_preds,
const gbm::GBTreeModel& model, size_t tree_begin,
size_t tree_end) {
if (tree_end - tree_begin == 0) {
return;
}
model_.Init(model, tree_begin, tree_end, qu_);
auto& out_preds_vec = out_preds->HostVector();
DeviceNodeOneAPI* nodes = model_.nodes;
cl::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
size_t* tree_segments = model_.tree_segments;
int* tree_group = model_.tree_group;
size_t* row_ptr = dmat->row_ptr;
EntryOneAPI* data = dmat->data;
int num_features = dmat->p_mat->Info().num_col_;
int num_rows = dmat->row_ptr_size - 1;
int num_group = model.learner_model_param->num_output_group;
qu_.submit([&](cl::sycl::handler& cgh) {
auto out_predictions = out_preds_buf.get_access<cl::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<class PredictInternal>(cl::sycl::range<1>(num_rows), [=](cl::sycl::id<1> pid) {
int global_idx = pid[0];
if (global_idx >= num_rows) return;
if (num_group == 1) {
float sum = 0.0;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNodeOneAPI* tree = nodes + tree_segments[tree_idx - tree_begin];
sum += GetLeafWeight(global_idx, tree, data, row_ptr);
}
out_predictions[global_idx] += sum;
} else {
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNodeOneAPI* tree = nodes + tree_segments[tree_idx - tree_begin];
int out_prediction_idx = global_idx * num_group + tree_group[tree_idx];
out_predictions[out_prediction_idx] += GetLeafWeight(global_idx, tree, data, row_ptr);
}
}
});
}).wait();
}
public:
explicit PredictorOneAPI(Context const* generic_param) :
Predictor::Predictor{generic_param}, cpu_predictor(Predictor::Create("cpu_predictor", generic_param)) {
cl::sycl::default_selector selector;
qu_ = cl::sycl::queue(selector);
}
// ntree_limit is a very problematic parameter, as it's ambiguous in the context of
// multi-output and forest. Same problem exists for tree_begin
void PredictBatch(DMatrix* dmat, PredictionCacheEntry* predts,
const gbm::GBTreeModel& model, int tree_begin,
uint32_t const ntree_limit = 0) override {
if (this->device_matrix_cache_.find(dmat) ==
this->device_matrix_cache_.end()) {
this->device_matrix_cache_.emplace(
dmat, std::unique_ptr<DeviceMatrixOneAPI>(
new DeviceMatrixOneAPI(dmat, qu_)));
}
DeviceMatrixOneAPI* device_matrix = device_matrix_cache_.find(dmat)->second.get();
// tree_begin is not used, right now we just enforce it to be 0.
CHECK_EQ(tree_begin, 0);
auto* out_preds = &predts->predictions;
CHECK_GE(predts->version, tree_begin);
if (out_preds->Size() == 0 && dmat->Info().num_row_ != 0) {
CHECK_EQ(predts->version, 0);
}
if (predts->version == 0) {
// out_preds->Size() can be non-zero as it's initialized here before any tree is
// built at the 0^th iterator.
this->InitOutPredictions(dmat->Info(), out_preds, model);
}
uint32_t const output_groups = model.learner_model_param->num_output_group;
CHECK_NE(output_groups, 0);
// Right now we just assume ntree_limit provided by users means number of tree layers
// in the context of multi-output model
uint32_t real_ntree_limit = ntree_limit * output_groups;
if (real_ntree_limit == 0 || real_ntree_limit > model.trees.size()) {
real_ntree_limit = static_cast<uint32_t>(model.trees.size());
}
uint32_t const end_version = (tree_begin + real_ntree_limit) / output_groups;
// When users have provided ntree_limit, end_version can be lesser, cache is violated
if (predts->version > end_version) {
CHECK_NE(ntree_limit, 0);
this->InitOutPredictions(dmat->Info(), out_preds, model);
predts->version = 0;
}
uint32_t const beg_version = predts->version;
CHECK_LE(beg_version, end_version);
if (beg_version < end_version) {
DevicePredictInternal(device_matrix, out_preds, model,
beg_version * output_groups,
end_version * output_groups);
}
// delta means {size of forest} * {number of newly accumulated layers}
uint32_t delta = end_version - beg_version;
CHECK_LE(delta, model.trees.size());
predts->Update(delta);
CHECK(out_preds->Size() == output_groups * dmat->Info().num_row_ ||
out_preds->Size() == dmat->Info().num_row_);
}
void InplacePredict(std::any const& x, const gbm::GBTreeModel& model, float missing,
PredictionCacheEntry* out_preds, uint32_t tree_begin,
unsigned tree_end) const override {
cpu_predictor->InplacePredict(x, model, missing, out_preds, tree_begin, tree_end);
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) override {
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit);
}
void PredictLeaf(DMatrix* p_fmat, std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) override {
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
}
void PredictContribution(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, uint32_t ntree_limit,
std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) override {
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights, approximate, condition, condition_feature);
}
void PredictInteractionContributions(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
std::vector<bst_float>* tree_weights,
bool approximate) override {
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit, tree_weights, approximate);
}
private:
cl::sycl::queue qu_;
DeviceModelOneAPI model_;
std::mutex lock_;
std::unique_ptr<Predictor> cpu_predictor;
std::unordered_map<DMatrix*, std::unique_ptr<DeviceMatrixOneAPI>>
device_matrix_cache_;
};
XGBOOST_REGISTER_PREDICTOR(PredictorOneAPI, "oneapi_predictor")
.describe("Make predictions using DPC++.")
.set_body([](Context const* generic_param) {
return new PredictorOneAPI(generic_param);
});
} // namespace predictor
} // namespace xgboost

View File

@ -1,145 +0,0 @@
/*!
* Copyright 2017-2020 XGBoost contributors
*/
#ifndef XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_
#define XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_
#include <dmlc/omp.h>
#include <xgboost/logging.h>
#include <algorithm>
#include "CL/sycl.hpp"
namespace xgboost {
namespace obj {
/*!
* \brief calculate the sigmoid of the input.
* \param x input parameter
* \return the transformed value.
*/
inline float SigmoidOneAPI(float x) {
return 1.0f / (1.0f + cl::sycl::exp(-x));
}
// common regressions
// linear regression
struct LinearSquareLossOneAPI {
static bst_float PredTransform(bst_float x) { return x; }
static bool CheckLabel(bst_float x) { return true; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
return 1.0f;
}
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() { return ""; }
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:squarederror_oneapi"; }
};
// TODO: DPC++ does not fully support std math inside offloaded kernels
struct SquaredLogErrorOneAPI {
static bst_float PredTransform(bst_float x) { return x; }
static bool CheckLabel(bst_float label) {
return label > -1;
}
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = std::max(predt, (bst_float)(-1 + 1e-6)); // ensure correct value for log1p
return (cl::sycl::log1p(predt) - cl::sycl::log1p(label)) / (predt + 1);
}
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
predt = std::max(predt, (bst_float)(-1 + 1e-6));
float res = (-cl::sycl::log1p(predt) + cl::sycl::log1p(label) + 1) /
cl::sycl::pow(predt + 1, (bst_float)2);
res = std::max(res, (bst_float)1e-6f);
return res;
}
static bst_float ProbToMargin(bst_float base_score) { return base_score; }
static const char* LabelErrorMsg() {
return "label must be greater than -1 for rmsle so that log(label + 1) can be valid.";
}
static const char* DefaultEvalMetric() { return "rmsle"; }
static const char* Name() { return "reg:squaredlogerror_oneapi"; }
};
// logistic loss for probability regression task
struct LogisticRegressionOneAPI {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
static bst_float PredTransform(bst_float x) { return SigmoidOneAPI(x); }
static bool CheckLabel(bst_float x) { return x >= 0.0f && x <= 1.0f; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
return predt - label;
}
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
const bst_float eps = 1e-16f;
return std::max(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return SigmoidOneAPI(x); }
template <typename T>
static T FirstOrderGradient(T predt, T label) { return predt - label; }
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
return std::max(predt * (T(1.0f) - predt), eps);
}
static bst_float ProbToMargin(bst_float base_score) {
CHECK(base_score > 0.0f && base_score < 1.0f)
<< "base_score must be in (0,1) for logistic loss, got: " << base_score;
return -logf(1.0f / base_score - 1.0f);
}
static const char* LabelErrorMsg() {
return "label must be in [0,1] for logistic regression";
}
static const char* DefaultEvalMetric() { return "rmse"; }
static const char* Name() { return "reg:logistic_oneapi"; }
};
// logistic loss for binary classification task
struct LogisticClassificationOneAPI : public LogisticRegressionOneAPI {
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logistic_oneapi"; }
};
// logistic loss, but predict un-transformed margin
struct LogisticRawOneAPI : public LogisticRegressionOneAPI {
// duplication is necessary, as __device__ specifier
// cannot be made conditional on template parameter
static bst_float PredTransform(bst_float x) { return x; }
static bst_float FirstOrderGradient(bst_float predt, bst_float label) {
predt = SigmoidOneAPI(predt);
return predt - label;
}
static bst_float SecondOrderGradient(bst_float predt, bst_float label) {
const bst_float eps = 1e-16f;
predt = SigmoidOneAPI(predt);
return std::max(predt * (1.0f - predt), eps);
}
template <typename T>
static T PredTransform(T x) { return x; }
template <typename T>
static T FirstOrderGradient(T predt, T label) {
predt = SigmoidOneAPI(predt);
return predt - label;
}
template <typename T>
static T SecondOrderGradient(T predt, T label) {
const T eps = T(1e-16f);
predt = SigmoidOneAPI(predt);
return std::max(predt * (T(1.0f) - predt), eps);
}
static const char* DefaultEvalMetric() { return "logloss"; }
static const char* Name() { return "binary:logitraw_oneapi"; }
};
} // namespace obj
} // namespace xgboost
#endif // XGBOOST_OBJECTIVE_REGRESSION_LOSS_ONEAPI_H_

View File

@ -1,182 +0,0 @@
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <cmath>
#include <memory>
#include <vector>
#include "xgboost/host_device_vector.h"
#include "xgboost/json.h"
#include "xgboost/parameter.h"
#include "xgboost/span.h"
#include "../../src/common/transform.h"
#include "../../src/common/common.h"
#include "./regression_loss_oneapi.h"
#include "CL/sycl.hpp"
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(regression_obj_oneapi);
struct RegLossParamOneAPI : public XGBoostParameter<RegLossParamOneAPI> {
float scale_pos_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(RegLossParamOneAPI) {
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
.describe("Scale the weight of positive examples by this factor");
}
};
template<typename Loss>
class RegLossObjOneAPI : public ObjFunction {
protected:
HostDeviceVector<int> label_correct_;
public:
RegLossObjOneAPI() = default;
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
cl::sycl::default_selector selector;
qu_ = cl::sycl::queue(selector);
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo &info,
int iter,
HostDeviceVector<GradientPair>* out_gpair) override {
if (info.labels_.Size() == 0U) {
LOG(WARNING) << "Label set is empty.";
}
CHECK_EQ(preds.Size(), info.labels_.Size())
<< " " << "labels are not correctly provided"
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels_.Size() << ", "
<< "Loss: " << Loss::Name();
size_t const ndata = preds.Size();
out_gpair->Resize(ndata);
// TODO: add label_correct check
label_correct_.Resize(1);
label_correct_.Fill(1);
bool is_null_weight = info.weights_.Size() == 0;
cl::sycl::buffer<bst_float, 1> preds_buf(preds.HostPointer(), preds.Size());
cl::sycl::buffer<bst_float, 1> labels_buf(info.labels_.HostPointer(), info.labels_.Size());
cl::sycl::buffer<GradientPair, 1> out_gpair_buf(out_gpair->HostPointer(), out_gpair->Size());
cl::sycl::buffer<bst_float, 1> weights_buf(is_null_weight ? NULL : info.weights_.HostPointer(),
is_null_weight ? 1 : info.weights_.Size());
cl::sycl::buffer<int, 1> additional_input_buf(1);
{
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>();
additional_input_acc[0] = 1; // Fill the label_correct flag
}
auto scale_pos_weight = param_.scale_pos_weight;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), ndata)
<< "Number of weights should be equal to number of data points.";
}
qu_.submit([&](cl::sycl::handler& cgh) {
auto preds_acc = preds_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto labels_acc = labels_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto weights_acc = weights_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto out_gpair_acc = out_gpair_buf.get_access<cl::sycl::access::mode::write>(cgh);
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>(cgh);
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
int idx = pid[0];
bst_float p = Loss::PredTransform(preds_acc[idx]);
bst_float w = is_null_weight ? 1.0f : weights_acc[idx];
bst_float label = labels_acc[idx];
if (label == 1.0f) {
w *= scale_pos_weight;
}
if (!Loss::CheckLabel(label)) {
// If there is an incorrect label, the host code will know.
additional_input_acc[0] = 0;
}
out_gpair_acc[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
Loss::SecondOrderGradient(p, label) * w);
});
}).wait();
int flag = 1;
{
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::read>();
flag = additional_input_acc[0];
}
if (flag == 0) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
public:
const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(HostDeviceVector<float> *io_preds) override {
size_t const ndata = io_preds->Size();
cl::sycl::buffer<bst_float, 1> io_preds_buf(io_preds->HostPointer(), io_preds->Size());
qu_.submit([&](cl::sycl::handler& cgh) {
auto io_preds_acc = io_preds_buf.get_access<cl::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
int idx = pid[0];
io_preds_acc[idx] = Loss::PredTransform(io_preds_acc[idx]);
});
}).wait();
}
float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(Loss::Name());
out["reg_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["reg_loss_param"], &param_);
}
protected:
RegLossParamOneAPI param_;
cl::sycl::queue qu_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(RegLossParamOneAPI);
// TODO: Find a better way to dispatch names of DPC++ kernels with various template parameters of loss function
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegressionOneAPI, LinearSquareLossOneAPI::Name())
.describe("Regression with squared error with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LinearSquareLossOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(SquareLogErrorOneAPI, SquaredLogErrorOneAPI::Name())
.describe("Regression with root mean squared logarithmic error with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<SquaredLogErrorOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegressionOneAPI, LogisticRegressionOneAPI::Name())
.describe("Logistic regression for probability regression task with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticRegressionOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassificationOneAPI, LogisticClassificationOneAPI::Name())
.describe("Logistic regression for binary classification task with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticClassificationOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRawOneAPI, LogisticRawOneAPI::Name())
.describe("Logistic regression for classification, output score "
"before logistic transformation with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticRawOneAPI>(); });
} // namespace obj
} // namespace xgboost

View File

@ -16,6 +16,10 @@ if(USE_CUDA)
target_sources(objxgboost PRIVATE ${CUDA_SOURCES}) target_sources(objxgboost PRIVATE ${CUDA_SOURCES})
endif() endif()
if(PLUGIN_SYCL)
target_compile_definitions(objxgboost PRIVATE -DXGBOOST_USE_SYCL=1)
endif()
target_include_directories(objxgboost target_include_directories(objxgboost
PRIVATE PRIVATE
${xgboost_SOURCE_DIR}/include ${xgboost_SOURCE_DIR}/include

View File

@ -169,10 +169,10 @@ inline void AssertNCCLSupport() {
#endif // !defined(XGBOOST_USE_NCCL) #endif // !defined(XGBOOST_USE_NCCL)
} }
inline void AssertOneAPISupport() { inline void AssertSYCLSupport() {
#ifndef XGBOOST_USE_ONEAPI #ifndef XGBOOST_USE_SYCL
LOG(FATAL) << "XGBoost version not compiled with OneAPI support."; LOG(FATAL) << "XGBoost version not compiled with SYCL support.";
#endif // XGBOOST_USE_ONEAPI #endif // XGBOOST_USE_SYCL
} }
void SetDevice(std::int32_t device); void SetDevice(std::int32_t device);

View File

@ -113,13 +113,13 @@ void GBTree::Configure(Args const& cfg) {
} }
#endif // defined(XGBOOST_USE_CUDA) #endif // defined(XGBOOST_USE_CUDA)
#if defined(XGBOOST_USE_ONEAPI) #if defined(XGBOOST_USE_SYCL)
if (!oneapi_predictor_) { if (!sycl_predictor_) {
oneapi_predictor_ = sycl_predictor_ =
std::unique_ptr<Predictor>(Predictor::Create("oneapi_predictor", this->ctx_)); std::unique_ptr<Predictor>(Predictor::Create("sycl_predictor", this->ctx_));
} }
oneapi_predictor_->Configure(cfg); sycl_predictor_->Configure(cfg);
#endif // defined(XGBOOST_USE_ONEAPI) #endif // defined(XGBOOST_USE_SYCL)
// `updater` parameter was manually specified // `updater` parameter was manually specified
specified_updater_ = specified_updater_ =
@ -553,6 +553,11 @@ void GBTree::InplacePredict(std::shared_ptr<DMatrix> p_m, float missing,
}, },
[&, begin = tree_begin, end = tree_end] { [&, begin = tree_begin, end = tree_end] {
return this->gpu_predictor_->InplacePredict(p_m, model_, missing, out_preds, begin, end); return this->gpu_predictor_->InplacePredict(p_m, model_, missing, out_preds, begin, end);
#if defined(XGBOOST_USE_SYCL)
},
[&, begin = tree_begin, end = tree_end] {
return this->sycl_predictor_->InplacePredict(p_m, model_, missing, out_preds, begin, end);
#endif // defined(XGBOOST_USE_SYCL)
}); });
if (!known_type) { if (!known_type) {
auto proxy = std::dynamic_pointer_cast<data::DMatrixProxy>(p_m); auto proxy = std::dynamic_pointer_cast<data::DMatrixProxy>(p_m);
@ -568,10 +573,16 @@ void GBTree::InplacePredict(std::shared_ptr<DMatrix> p_m, float missing,
if (f_dmat && !f_dmat->SingleColBlock()) { if (f_dmat && !f_dmat->SingleColBlock()) {
if (ctx_->IsCPU()) { if (ctx_->IsCPU()) {
return cpu_predictor_; return cpu_predictor_;
} else { } else if (ctx_->IsCUDA()) {
common::AssertGPUSupport(); common::AssertGPUSupport();
CHECK(gpu_predictor_); CHECK(gpu_predictor_);
return gpu_predictor_; return gpu_predictor_;
} else {
#if defined(XGBOOST_USE_SYCL)
common::AssertSYCLSupport();
CHECK(sycl_predictor_);
return sycl_predictor_;
#endif // defined(XGBOOST_USE_SYCL)
} }
} }
@ -606,10 +617,16 @@ void GBTree::InplacePredict(std::shared_ptr<DMatrix> p_m, float missing,
if (ctx_->IsCPU()) { if (ctx_->IsCPU()) {
return cpu_predictor_; return cpu_predictor_;
} else { } else if (ctx_->IsCUDA()) {
common::AssertGPUSupport(); common::AssertGPUSupport();
CHECK(gpu_predictor_); CHECK(gpu_predictor_);
return gpu_predictor_; return gpu_predictor_;
} else {
#if defined(XGBOOST_USE_SYCL)
common::AssertSYCLSupport();
CHECK(sycl_predictor_);
return sycl_predictor_;
#endif // defined(XGBOOST_USE_SYCL)
} }
return cpu_predictor_; return cpu_predictor_;
@ -814,6 +831,11 @@ class Dart : public GBTree {
}, },
[&] { [&] {
return gpu_predictor_->InplacePredict(p_fmat, model_, missing, &predts, i, i + 1); return gpu_predictor_->InplacePredict(p_fmat, model_, missing, &predts, i, i + 1);
#if defined(XGBOOST_USE_SYCL)
},
[&] {
return sycl_predictor_->InplacePredict(p_fmat, model_, missing, &predts, i, i + 1);
#endif // defined(XGBOOST_USE_SYCL)
}); });
CHECK(success) << msg; CHECK(success) << msg;
}; };
@ -830,6 +852,12 @@ class Dart : public GBTree {
[&] { [&] {
this->gpu_predictor_->InitOutPredictions(p_fmat->Info(), &p_out_preds->predictions, this->gpu_predictor_->InitOutPredictions(p_fmat->Info(), &p_out_preds->predictions,
model_); model_);
#if defined(XGBOOST_USE_SYCL)
},
[&] {
this->sycl_predictor_->InitOutPredictions(p_fmat->Info(), &p_out_preds->predictions,
model_);
#endif // defined(XGBOOST_USE_SYCL)
}); });
} }
// Multiple the tree weight // Multiple the tree weight

View File

@ -349,9 +349,9 @@ class GBTree : public GradientBooster {
// Predictors // Predictors
std::unique_ptr<Predictor> cpu_predictor_; std::unique_ptr<Predictor> cpu_predictor_;
std::unique_ptr<Predictor> gpu_predictor_{nullptr}; std::unique_ptr<Predictor> gpu_predictor_{nullptr};
#if defined(XGBOOST_USE_ONEAPI) #if defined(XGBOOST_USE_SYCL)
std::unique_ptr<Predictor> oneapi_predictor_; std::unique_ptr<Predictor> sycl_predictor_;
#endif // defined(XGBOOST_USE_ONEAPI) #endif // defined(XGBOOST_USE_SYCL)
common::Monitor monitor_; common::Monitor monitor_;
}; };

View File

@ -0,0 +1,20 @@
name: linux_sycl_test
channels:
- conda-forge
- intel
dependencies:
- python=3.8
- cmake
- c-compiler
- cxx-compiler
- pip
- wheel
- numpy
- scipy
- scikit-learn
- pandas
- hypothesis>=6.46
- pytest
- pytest-timeout
- pytest-cov
- dpcpp_linux-64

View File

@ -138,7 +138,7 @@ def main():
"path", "path",
nargs="*", nargs="*",
help="Path to traverse", help="Path to traverse",
default=["src", "include", os.path.join("R-package", "src"), "python-package"], default=["src", "include", os.path.join("R-package", "src"), "python-package", "plugin/sycl"],
) )
parser.add_argument( parser.add_argument(
"--exclude_path", "--exclude_path",

View File

@ -33,6 +33,7 @@ class LintersPaths:
"tests/python-gpu/test_gpu_pickling.py", "tests/python-gpu/test_gpu_pickling.py",
"tests/python-gpu/test_gpu_eval_metrics.py", "tests/python-gpu/test_gpu_eval_metrics.py",
"tests/python-gpu/test_gpu_with_sklearn.py", "tests/python-gpu/test_gpu_with_sklearn.py",
"tests/python-sycl/test_sycl_prediction.py",
"tests/test_distributed/test_with_spark/", "tests/test_distributed/test_with_spark/",
"tests/test_distributed/test_gpu_with_spark/", "tests/test_distributed/test_gpu_with_spark/",
# demo # demo

View File

@ -13,9 +13,9 @@ if(USE_CUDA)
list(APPEND TEST_SOURCES ${CUDA_TEST_SOURCES}) list(APPEND TEST_SOURCES ${CUDA_TEST_SOURCES})
endif() endif()
file(GLOB_RECURSE ONEAPI_TEST_SOURCES "plugin/*_oneapi.cc") file(GLOB_RECURSE SYCL_TEST_SOURCES "plugin/test_sycl_*.cc")
if(NOT PLUGIN_UPDATER_ONEAPI) if(NOT PLUGIN_SYCL)
list(REMOVE_ITEM TEST_SOURCES ${ONEAPI_TEST_SOURCES}) list(REMOVE_ITEM TEST_SOURCES ${SYCL_TEST_SOURCES})
endif() endif()
if(PLUGIN_FEDERATED) if(PLUGIN_FEDERATED)

View File

@ -1,168 +0,0 @@
/*!
* Copyright 2017-2020 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../../../src/data/adapter.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../filesystem.h" // dmlc::TemporaryDirectory
#include "../helpers.h"
#include "../predictor/test_predictor.h"
namespace xgboost {
TEST(Plugin, OneAPIPredictorBasic) {
auto lparam = MakeCUDACtx(0);
std::unique_ptr<Predictor> oneapi_predictor =
std::unique_ptr<Predictor>(Predictor::Create("oneapi_predictor", &lparam));
int kRows = 5;
int kCols = 5;
LearnerModelParam param;
param.num_feature = kCols;
param.base_score = 0.0;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
// Test predict batch
PredictionCacheEntry out_predictions;
oneapi_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
ASSERT_EQ(model.trees.size(), out_predictions.version);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto const &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
for (size_t i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
oneapi_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
oneapi_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
for (auto v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model, 0, nullptr, true);
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(Plugin, OneAPIPredictorExternalMemory) {
dmlc::TemporaryDirectory tmpdir;
std::string filename = tmpdir.path + "/big.libsvm";
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64, filename);
auto lparam = MakeCUDACtx(0);
std::unique_ptr<Predictor> oneapi_predictor =
std::unique_ptr<Predictor>(Predictor::Create("oneapi_predictor", &lparam));
LearnerModelParam param;
param.base_score = 0;
param.num_feature = dmat->Info().num_col_;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
// Test predict batch
PredictionCacheEntry out_predictions;
oneapi_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
std::vector<float> &out_predictions_h = out_predictions.predictions.HostVector();
ASSERT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_);
for (const auto& v : out_predictions_h) {
ASSERT_EQ(v, 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
oneapi_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
for (const auto& v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
std::vector<float> out_contribution_approximate;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, 0, nullptr, true);
ASSERT_EQ(out_contribution_approximate.size(),
dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(Plugin, OneAPIPredictorInplacePredict) {
bst_row_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(-1);
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
std::shared_ptr<data::DenseAdapter> x{
new data::DenseAdapter(data.HostPointer(), kRows, kCols)};
TestInplacePrediction(x, "oneapi_predictor", kRows, kCols, -1);
}
{
HostDeviceVector<float> data;
HostDeviceVector<bst_row_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
gen.GenerateCSR(&data, &rptrs, &columns);
std::shared_ptr<data::CSRAdapter> x{new data::CSRAdapter(
rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), kRows,
data.Size(), kCols)};
TestInplacePrediction(x, "oneapi_predictor", kRows, kCols, -1);
}
}
} // namespace xgboost

View File

@ -1,176 +0,0 @@
/*!
* Copyright 2017-2019 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/objective.h>
#include <xgboost/context.h>
#include <xgboost/json.h>
#include "../helpers.h"
namespace xgboost {
TEST(Plugin, LinearRegressionGPairOneAPI) {
Context tparam = MakeCUDACtx(0);
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj {
ObjFunction::Create("reg:squarederror_oneapi", &tparam)
};
obj->Configure(args);
CheckObjFunction(obj,
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{0, 0, 0, 0, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1, 1},
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
{1, 1, 1, 1, 1, 1, 1, 1});
CheckObjFunction(obj,
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{0, 0, 0, 0, 1, 1, 1, 1},
{}, // empty weight
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
{1, 1, 1, 1, 1, 1, 1, 1});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
}
TEST(Plugin, SquaredLogOneAPI) {
Context tparam = MakeCUDACtx(0);
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj { ObjFunction::Create("reg:squaredlogerror_oneapi", &tparam) };
obj->Configure(args);
CheckConfigReload(obj, "reg:squaredlogerror_oneapi");
CheckObjFunction(obj,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // weights
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
CheckObjFunction(obj,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
{}, // empty weights
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
ASSERT_EQ(obj->DefaultEvalMetric(), std::string{"rmsle"});
}
TEST(Plugin, LogisticRegressionGPairOneAPI) {
Context tparam = MakeCUDACtx(0);
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj { ObjFunction::Create("reg:logistic_oneapi", &tparam) };
obj->Configure(args);
CheckConfigReload(obj, "reg:logistic_oneapi");
CheckObjFunction(obj,
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1}, // preds
{ 0, 0, 0, 0, 1, 1, 1, 1}, // labels
{ 1, 1, 1, 1, 1, 1, 1, 1}, // weights
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f}, // out_grad
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f}); // out_hess
}
TEST(Plugin, LogisticRegressionBasicOneAPI) {
Context lparam = MakeCUDACtx(0);
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj {
ObjFunction::Create("reg:logistic_oneapi", &lparam)
};
obj->Configure(args);
CheckConfigReload(obj, "reg:logistic_oneapi");
// test label validation
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
<< "Expected error when label not in range [0,1f] for LogisticRegression";
// test ProbToMargin
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.197f, 0.01f);
EXPECT_NEAR(obj->ProbToMargin(0.5f), 0, 0.01f);
EXPECT_NEAR(obj->ProbToMargin(0.9f), 2.197f, 0.01f);
EXPECT_ANY_THROW(obj->ProbToMargin(10))
<< "Expected error when base_score not in range [0,1f] for LogisticRegression";
// test PredTransform
HostDeviceVector<bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
std::vector<bst_float> out_preds = {0.5f, 0.524f, 0.622f, 0.710f, 0.731f};
obj->PredTransform(&io_preds);
auto& preds = io_preds.HostVector();
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
}
TEST(Plugin, LogisticRawGPairOneAPI) {
Context lparam = MakeCUDACtx(0);
std::vector<std::pair<std::string, std::string>> args;
std::unique_ptr<ObjFunction> obj {
ObjFunction::Create("binary:logitraw_oneapi", &lparam)
};
obj->Configure(args);
CheckObjFunction(obj,
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
{ 0, 0, 0, 0, 1, 1, 1, 1},
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
}
TEST(Plugin, CPUvsOneAPI) {
Context ctx = MakeCUDACtx(0);
ObjFunction * obj_cpu =
ObjFunction::Create("reg:squarederror", &ctx);
ObjFunction * obj_oneapi =
ObjFunction::Create("reg:squarederror_oneapi", &ctx);
HostDeviceVector<GradientPair> cpu_out_preds;
HostDeviceVector<GradientPair> oneapi_out_preds;
constexpr size_t kRows = 400;
constexpr size_t kCols = 100;
auto pdmat = RandomDataGenerator(kRows, kCols, 0).Seed(0).GenerateDMatrix();
HostDeviceVector<float> preds;
preds.Resize(kRows);
auto& h_preds = preds.HostVector();
for (size_t i = 0; i < h_preds.size(); ++i) {
h_preds[i] = static_cast<float>(i);
}
auto& info = pdmat->Info();
info.labels.Reshape(kRows, 1);
auto& h_labels = info.labels.Data()->HostVector();
for (size_t i = 0; i < h_labels.size(); ++i) {
h_labels[i] = 1 / static_cast<float>(i+1);
}
{
// CPU
ctx = ctx.MakeCPU();
obj_cpu->GetGradient(preds, info, 0, &cpu_out_preds);
}
{
// oneapi
ctx.gpu_id = 0;
obj_oneapi->GetGradient(preds, info, 0, &oneapi_out_preds);
}
auto& h_cpu_out = cpu_out_preds.HostVector();
auto& h_oneapi_out = oneapi_out_preds.HostVector();
float sgrad = 0;
float shess = 0;
for (size_t i = 0; i < kRows; ++i) {
sgrad += std::pow(h_cpu_out[i].GetGrad() - h_oneapi_out[i].GetGrad(), 2);
shess += std::pow(h_cpu_out[i].GetHess() - h_oneapi_out[i].GetHess(), 2);
}
ASSERT_NEAR(sgrad, 0.0f, kRtEps);
ASSERT_NEAR(shess, 0.0f, kRtEps);
delete obj_cpu;
delete obj_oneapi;
}
} // namespace xgboost

View File

@ -0,0 +1,101 @@
/*!
* Copyright 2017-2023 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../../../src/data/adapter.h"
#include "../../../src/data/proxy_dmatrix.h"
#include "../../../src/gbm/gbtree.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../filesystem.h" // dmlc::TemporaryDirectory
#include "../helpers.h"
#include "../predictor/test_predictor.h"
namespace xgboost {
TEST(SyclPredictor, Basic) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
size_t constexpr kRows = 5;
size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
TestBasic(dmat.get(), &ctx);
}
TEST(SyclPredictor, ExternalMemory) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
size_t constexpr kPageSize = 64, kEntriesPerCol = 3;
size_t constexpr kEntries = kPageSize * kEntriesPerCol * 2;
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(kEntries);
TestBasic(dmat.get(), &ctx);
}
TEST(SyclPredictor, InplacePredict) {
bst_row_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
Context ctx;
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(ctx.Device());
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
auto array_interface = GetArrayInterface(&data, kRows, kCols);
std::string arr_str;
Json::Dump(array_interface, &arr_str);
x->SetArrayData(arr_str.data());
TestInplacePrediction(&ctx, x, kRows, kCols);
}
}
TEST(SyclPredictor, IterationRange) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
TestIterationRange(&ctx);
}
TEST(SyclPredictor, GHistIndexTraining) {
size_t constexpr kRows{128}, kCols{16}, kBins{64};
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
auto p_hist = RandomDataGenerator{kRows, kCols, 0.0}.Bins(kBins).GenerateDMatrix(false);
HostDeviceVector<float> storage(kRows * kCols);
auto columnar = RandomDataGenerator{kRows, kCols, 0.0}.GenerateArrayInterface(&storage);
auto adapter = data::ArrayAdapter(columnar.c_str());
std::shared_ptr<DMatrix> p_full{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
TestTrainingPrediction(&ctx, kRows, kBins, p_full, p_hist);
}
TEST(SyclPredictor, CategoricalPredictLeaf) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
TestCategoricalPredictLeaf(&ctx, false);
}
TEST(SyclPredictor, LesserFeatures) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
TestPredictionWithLesserFeatures(&ctx);
}
TEST(SyclPredictor, Sparse) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
TestSparsePrediction(&ctx, 0.2);
TestSparsePrediction(&ctx, 0.8);
}
TEST(SyclPredictor, Multi) {
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
TestVectorLeafPrediction(&ctx);
}
} // namespace xgboost

View File

@ -18,92 +18,17 @@
namespace xgboost { namespace xgboost {
namespace {
void TestBasic(DMatrix* dmat) {
Context ctx;
std::unique_ptr<Predictor> cpu_predictor =
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &ctx));
size_t const kRows = dmat->Info().num_row_;
size_t const kCols = dmat->Info().num_col_;
LearnerModelParam mparam{MakeMP(kCols, .0, 1)};
ctx.UpdateAllowUnknown(Args{});
gbm::GBTreeModel model = CreateTestModel(&mparam, &ctx);
// Test predict batch
PredictionCacheEntry out_predictions;
cpu_predictor->InitOutPredictions(dmat->Info(), &out_predictions.predictions, model);
cpu_predictor->PredictBatch(dmat, &out_predictions, model, 0);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto const& batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
auto page = batch.GetView();
for (size_t i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
cpu_predictor->PredictInstance(page[i], &instance_out_predictions, model, 0,
dmat->Info().IsColumnSplit());
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
HostDeviceVector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat, &leaf_out_predictions, model);
auto const& h_leaf_out_predictions = leaf_out_predictions.ConstHostVector();
for (auto v : h_leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
if (dmat->Info().IsColumnSplit()) {
// Predict contribution is not supported for column split.
return;
}
// Test predict contribution
HostDeviceVector<float> out_contribution_hdv;
auto& out_contribution = out_contribution_hdv.HostVector();
cpu_predictor->PredictContribution(dmat, &out_contribution_hdv, model);
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is
// filled with LeafValue().
if ((i + 1) % (kCols + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
cpu_predictor->PredictContribution(dmat, &out_contribution_hdv, model, 0, nullptr, true);
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is
// filled with LeafValue().
if ((i + 1) % (kCols + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
} // anonymous namespace
TEST(CpuPredictor, Basic) { TEST(CpuPredictor, Basic) {
Context ctx;
size_t constexpr kRows = 5; size_t constexpr kRows = 5;
size_t constexpr kCols = 5; size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix(); auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
TestBasic(dmat.get()); TestBasic(dmat.get(), &ctx);
} }
namespace { namespace {
void TestColumnSplit() { void TestColumnSplit() {
Context ctx;
size_t constexpr kRows = 5; size_t constexpr kRows = 5;
size_t constexpr kCols = 5; size_t constexpr kCols = 5;
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix(); auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
@ -112,7 +37,7 @@ void TestColumnSplit() {
auto const rank = collective::GetRank(); auto const rank = collective::GetRank();
dmat = std::unique_ptr<DMatrix>{dmat->SliceCol(world_size, rank)}; dmat = std::unique_ptr<DMatrix>{dmat->SliceCol(world_size, rank)};
TestBasic(dmat.get()); TestBasic(dmat.get(), &ctx);
} }
} // anonymous namespace } // anonymous namespace
@ -132,10 +57,11 @@ TEST(CpuPredictor, IterationRangeColmnSplit) {
} }
TEST(CpuPredictor, ExternalMemory) { TEST(CpuPredictor, ExternalMemory) {
Context ctx;
size_t constexpr kPageSize = 64, kEntriesPerCol = 3; size_t constexpr kPageSize = 64, kEntriesPerCol = 3;
size_t constexpr kEntries = kPageSize * kEntriesPerCol * 2; size_t constexpr kEntries = kPageSize * kEntriesPerCol * 2;
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(kEntries); std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(kEntries);
TestBasic(dmat.get()); TestBasic(dmat.get(), &ctx);
} }
TEST(CpuPredictor, InplacePredict) { TEST(CpuPredictor, InplacePredict) {
@ -235,12 +161,14 @@ TEST(CPUPredictor, CategoricalPredictionColumnSplit) {
} }
TEST(CPUPredictor, CategoricalPredictLeaf) { TEST(CPUPredictor, CategoricalPredictLeaf) {
TestCategoricalPredictLeaf(false, false); Context ctx;
TestCategoricalPredictLeaf(&ctx, false);
} }
TEST(CPUPredictor, CategoricalPredictLeafColumnSplit) { TEST(CPUPredictor, CategoricalPredictLeafColumnSplit) {
auto constexpr kWorldSize = 2; auto constexpr kWorldSize = 2;
RunWithInMemoryCommunicator(kWorldSize, TestCategoricalPredictLeaf, false, true); Context ctx;
RunWithInMemoryCommunicator(kWorldSize, TestCategoricalPredictLeaf, &ctx, true);
} }
TEST(CpuPredictor, UpdatePredictionCache) { TEST(CpuPredictor, UpdatePredictionCache) {

View File

@ -289,11 +289,13 @@ TEST_F(MGPUPredictorTest, CategoricalPredictionColumnSplit) {
} }
TEST(GPUPredictor, CategoricalPredictLeaf) { TEST(GPUPredictor, CategoricalPredictLeaf) {
TestCategoricalPredictLeaf(true, false); auto ctx = MakeCUDACtx(common::AllVisibleGPUs() == 1 ? 0 : collective::GetRank());
TestCategoricalPredictLeaf(&ctx, false);
} }
TEST_F(MGPUPredictorTest, CategoricalPredictionLeafColumnSplit) { TEST_F(MGPUPredictorTest, CategoricalPredictionLeafColumnSplit) {
RunWithInMemoryCommunicator(world_size_, TestCategoricalPredictLeaf, true, true); auto ctx = MakeCUDACtx(common::AllVisibleGPUs() == 1 ? 0 : collective::GetRank());
RunWithInMemoryCommunicator(world_size_, TestCategoricalPredictLeaf, &ctx, true);
} }
TEST(GPUPredictor, PredictLeafBasic) { TEST(GPUPredictor, PredictLeafBasic) {

View File

@ -26,6 +26,79 @@
#include "xgboost/tree_model.h" // for RegTree #include "xgboost/tree_model.h" // for RegTree
namespace xgboost { namespace xgboost {
void TestBasic(DMatrix* dmat, Context const *ctx) {
auto predictor = std::unique_ptr<Predictor>(CreatePredictorForTest(ctx));
size_t const kRows = dmat->Info().num_row_;
size_t const kCols = dmat->Info().num_col_;
LearnerModelParam mparam{MakeMP(kCols, .0, 1)};
gbm::GBTreeModel model = CreateTestModel(&mparam, ctx);
// Test predict batch
PredictionCacheEntry out_predictions;
predictor->InitOutPredictions(dmat->Info(), &out_predictions.predictions, model);
predictor->PredictBatch(dmat, &out_predictions, model, 0);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto const& batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
auto page = batch.GetView();
for (size_t i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
predictor->PredictInstance(page[i], &instance_out_predictions, model, 0,
dmat->Info().IsColumnSplit());
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
HostDeviceVector<float> leaf_out_predictions;
predictor->PredictLeaf(dmat, &leaf_out_predictions, model);
auto const& h_leaf_out_predictions = leaf_out_predictions.ConstHostVector();
for (auto v : h_leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
if (dmat->Info().IsColumnSplit()) {
// Predict contribution is not supported for column split.
return;
}
// Test predict contribution
HostDeviceVector<float> out_contribution_hdv;
auto& out_contribution = out_contribution_hdv.HostVector();
predictor->PredictContribution(dmat, &out_contribution_hdv, model);
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is
// filled with LeafValue().
if ((i + 1) % (kCols + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
predictor->PredictContribution(dmat, &out_contribution_hdv, model, 0, nullptr, true);
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is
// filled with LeafValue().
if ((i + 1) % (kCols + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(Predictor, PredictionCache) { TEST(Predictor, PredictionCache) {
size_t constexpr kRows = 16, kCols = 4; size_t constexpr kRows = 16, kCols = 4;
@ -64,7 +137,7 @@ void TestTrainingPrediction(Context const *ctx, size_t rows, size_t bins,
{"num_feature", std::to_string(kCols)}, {"num_feature", std::to_string(kCols)},
{"num_class", std::to_string(kClasses)}, {"num_class", std::to_string(kClasses)},
{"max_bin", std::to_string(bins)}, {"max_bin", std::to_string(bins)},
{"device", ctx->DeviceName()}}); {"device", ctx->IsSycl() ? "cpu" : ctx->DeviceName()}});
learner->Configure(); learner->Configure();
for (size_t i = 0; i < kIters; ++i) { for (size_t i = 0; i < kIters; ++i) {
@ -151,7 +224,7 @@ std::unique_ptr<Learner> LearnerForTest(Context const *ctx, std::shared_ptr<DMat
size_t iters, size_t forest = 1) { size_t iters, size_t forest = 1) {
std::unique_ptr<Learner> learner{Learner::Create({dmat})}; std::unique_ptr<Learner> learner{Learner::Create({dmat})};
learner->SetParams( learner->SetParams(
Args{{"num_parallel_tree", std::to_string(forest)}, {"device", ctx->DeviceName()}}); Args{{"num_parallel_tree", std::to_string(forest)}, {"device", ctx->IsSycl() ? "cpu" : ctx->DeviceName()}});
for (size_t i = 0; i < iters; ++i) { for (size_t i = 0; i < iters; ++i) {
learner->UpdateOneIter(i, dmat); learner->UpdateOneIter(i, dmat);
} }
@ -305,11 +378,7 @@ void TestCategoricalPrediction(bool use_gpu, bool is_column_split) {
ASSERT_EQ(out_predictions.predictions.HostVector()[0], left_weight + score); ASSERT_EQ(out_predictions.predictions.HostVector()[0], left_weight + score);
} }
void TestCategoricalPredictLeaf(bool use_gpu, bool is_column_split) { void TestCategoricalPredictLeaf(Context const *ctx, bool is_column_split) {
Context ctx;
if (use_gpu) {
ctx = MakeCUDACtx(common::AllVisibleGPUs() == 1 ? 0 : collective::GetRank());
}
size_t constexpr kCols = 10; size_t constexpr kCols = 10;
PredictionCacheEntry out_predictions; PredictionCacheEntry out_predictions;
@ -320,10 +389,10 @@ void TestCategoricalPredictLeaf(bool use_gpu, bool is_column_split) {
float left_weight = 1.3f; float left_weight = 1.3f;
float right_weight = 1.7f; float right_weight = 1.7f;
gbm::GBTreeModel model(&mparam, &ctx); gbm::GBTreeModel model(&mparam, ctx);
GBTreeModelForTest(&model, split_ind, split_cat, left_weight, right_weight); GBTreeModelForTest(&model, split_ind, split_cat, left_weight, right_weight);
std::unique_ptr<Predictor> predictor{CreatePredictorForTest(&ctx)}; std::unique_ptr<Predictor> predictor{CreatePredictorForTest(ctx)};
std::vector<float> row(kCols); std::vector<float> row(kCols);
row[split_ind] = split_cat; row[split_ind] = split_cat;
@ -363,7 +432,6 @@ void TestIterationRange(Context const* ctx) {
HostDeviceVector<float> out_predt_sliced; HostDeviceVector<float> out_predt_sliced;
HostDeviceVector<float> out_predt_ranged; HostDeviceVector<float> out_predt_ranged;
// margin
{ {
sliced->Predict(dmat, true, &out_predt_sliced, 0, 0, false, false, false, false, false); sliced->Predict(dmat, true, &out_predt_sliced, 0, 0, false, false, false, false, false);
learner->Predict(dmat, true, &out_predt_ranged, 0, lend, false, false, false, false, false); learner->Predict(dmat, true, &out_predt_ranged, 0, lend, false, false, false, false, false);
@ -519,6 +587,8 @@ void TestSparsePrediction(Context const *ctx, float sparsity) {
learner.reset(Learner::Create({Xy})); learner.reset(Learner::Create({Xy}));
learner->LoadModel(model); learner->LoadModel(model);
learner->SetParam("device", ctx->DeviceName());
learner->Configure();
if (ctx->IsCUDA()) { if (ctx->IsCUDA()) {
learner->SetParam("tree_method", "gpu_hist"); learner->SetParam("tree_method", "gpu_hist");

View File

@ -34,6 +34,8 @@ inline gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, Context
inline auto CreatePredictorForTest(Context const* ctx) { inline auto CreatePredictorForTest(Context const* ctx) {
if (ctx->IsCPU()) { if (ctx->IsCPU()) {
return Predictor::Create("cpu_predictor", ctx); return Predictor::Create("cpu_predictor", ctx);
} else if (ctx->IsSycl()) {
return Predictor::Create("sycl_predictor", ctx);
} else { } else {
return Predictor::Create("gpu_predictor", ctx); return Predictor::Create("gpu_predictor", ctx);
} }
@ -83,6 +85,8 @@ void TestPredictionFromGradientIndex(Context const* ctx, size_t rows, size_t col
} }
} }
void TestBasic(DMatrix* dmat, Context const * ctx);
// p_full and p_hist should come from the same data set. // p_full and p_hist should come from the same data set.
void TestTrainingPrediction(Context const* ctx, size_t rows, size_t bins, void TestTrainingPrediction(Context const* ctx, size_t rows, size_t bins,
std::shared_ptr<DMatrix> p_full, std::shared_ptr<DMatrix> p_hist); std::shared_ptr<DMatrix> p_full, std::shared_ptr<DMatrix> p_hist);
@ -98,7 +102,7 @@ void TestCategoricalPrediction(bool use_gpu, bool is_column_split);
void TestPredictionWithLesserFeaturesColumnSplit(bool use_gpu); void TestPredictionWithLesserFeaturesColumnSplit(bool use_gpu);
void TestCategoricalPredictLeaf(bool use_gpu, bool is_column_split); void TestCategoricalPredictLeaf(Context const *ctx, bool is_column_split);
void TestIterationRange(Context const* ctx); void TestIterationRange(Context const* ctx);

View File

@ -0,0 +1,165 @@
import sys
import unittest
import pytest
import numpy as np
import xgboost as xgb
from hypothesis import given, strategies, assume, settings, note
from xgboost import testing as tm
rng = np.random.RandomState(1994)
shap_parameter_strategy = strategies.fixed_dictionaries(
{
"max_depth": strategies.integers(1, 11),
"max_leaves": strategies.integers(0, 256),
"num_parallel_tree": strategies.sampled_from([1, 10]),
}
).filter(lambda x: x["max_depth"] > 0 or x["max_leaves"] > 0)
class TestSYCLPredict(unittest.TestCase):
def test_predict(self):
iterations = 10
np.random.seed(1)
test_num_rows = [10, 1000, 5000]
test_num_cols = [10, 50, 500]
for num_rows in test_num_rows:
for num_cols in test_num_cols:
dtrain = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
dval = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
dtest = xgb.DMatrix(
np.random.randn(num_rows, num_cols),
label=[0, 1] * int(num_rows / 2),
)
watchlist = [(dtrain, "train"), (dval, "validation")]
res = {}
param = {
"objective": "binary:logistic",
"eval_metric": "logloss",
"tree_method": "hist",
"device": "cpu",
"max_depth": 1,
"verbosity": 0,
}
bst = xgb.train(
param, dtrain, iterations, evals=watchlist, evals_result=res
)
assert tm.non_increasing(res["train"]["logloss"])
cpu_pred_train = bst.predict(dtrain, output_margin=True)
cpu_pred_test = bst.predict(dtest, output_margin=True)
cpu_pred_val = bst.predict(dval, output_margin=True)
bst.set_param({"device": "sycl"})
sycl_pred_train = bst.predict(dtrain, output_margin=True)
sycl_pred_test = bst.predict(dtest, output_margin=True)
sycl_pred_val = bst.predict(dval, output_margin=True)
np.testing.assert_allclose(cpu_pred_train, sycl_pred_train, rtol=1e-6)
np.testing.assert_allclose(cpu_pred_val, sycl_pred_val, rtol=1e-6)
np.testing.assert_allclose(cpu_pred_test, sycl_pred_test, rtol=1e-6)
@pytest.mark.skipif(**tm.no_sklearn())
def test_multi_predict(self):
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
n = 1000
X, y = make_regression(n, random_state=rng)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test)
params = {}
params["tree_method"] = "hist"
params["device"] = "cpu"
bst = xgb.train(params, dtrain)
cpu_predict = bst.predict(dtest)
bst.set_param({"device": "sycl"})
predict0 = bst.predict(dtest)
predict1 = bst.predict(dtest)
assert np.allclose(predict0, predict1)
assert np.allclose(predict0, cpu_predict)
@pytest.mark.skipif(**tm.no_sklearn())
def test_sklearn(self):
m, n = 15000, 14
tr_size = 2500
X = np.random.rand(m, n)
y = 200 * np.matmul(X, np.arange(-3, -3 + n))
X_train, y_train = X[:tr_size, :], y[:tr_size]
X_test, y_test = X[tr_size:, :], y[tr_size:]
# First with cpu_predictor
params = {
"tree_method": "hist",
"device": "cpu",
"n_jobs": -1,
"verbosity": 0,
"seed": 123,
}
m = xgb.XGBRegressor(**params).fit(X_train, y_train)
cpu_train_score = m.score(X_train, y_train)
cpu_test_score = m.score(X_test, y_test)
# Now with sycl_predictor
params["device"] = "sycl"
m.set_params(**params)
sycl_train_score = m.score(X_train, y_train)
sycl_test_score = m.score(X_test, y_test)
assert np.allclose(cpu_train_score, sycl_train_score)
assert np.allclose(cpu_test_score, sycl_test_score)
@given(
strategies.integers(1, 10), tm.make_dataset_strategy(), shap_parameter_strategy
)
@settings(deadline=None)
def test_shap(self, num_rounds, dataset, param):
if dataset.name.endswith("-l1"): # not supported by the exact tree method
return
param.update({"tree_method": "hist", "device": "cpu"})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
bst = xgb.train(param, dmat, num_rounds)
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
bst.set_param({"device": "sycl"})
shap = bst.predict(test_dmat, pred_contribs=True)
margin = bst.predict(test_dmat, output_margin=True)
assume(len(dataset.y) > 0)
assert np.allclose(np.sum(shap, axis=len(shap.shape) - 1), margin, 1e-3, 1e-3)
@given(
strategies.integers(1, 10), tm.make_dataset_strategy(), shap_parameter_strategy
)
@settings(deadline=None, max_examples=20)
def test_shap_interactions(self, num_rounds, dataset, param):
if dataset.name.endswith("-l1"): # not supported by the exact tree method
return
param.update({"tree_method": "hist", "device": "cpu"})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
bst = xgb.train(param, dmat, num_rounds)
test_dmat = xgb.DMatrix(dataset.X, dataset.y, dataset.w, dataset.margin)
bst.set_param({"device": "sycl"})
shap = bst.predict(test_dmat, pred_interactions=True)
margin = bst.predict(test_dmat, output_margin=True)
assume(len(dataset.y) > 0)
assert np.allclose(
np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)),
margin,
1e-3,
1e-3,
)