--------- Co-authored-by: Dmitry Razdoburdin <> Co-authored-by: Nikolay Petrov <nikolay.a.petrov@intel.com> Co-authored-by: Alexandra <alexandra.epanchinzeva@intel.com>
343 lines
12 KiB
C++
Executable File
343 lines
12 KiB
C++
Executable File
/*!
|
|
* Copyright by Contributors 2017-2023
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
|
|
#pragma GCC diagnostic ignored "-W#pragma-messages"
|
|
#include <rabit/rabit.h>
|
|
#pragma GCC diagnostic pop
|
|
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <mutex>
|
|
|
|
#include <CL/sycl.hpp>
|
|
|
|
#include "../data.h"
|
|
|
|
#include "dmlc/registry.h"
|
|
|
|
#include "xgboost/tree_model.h"
|
|
#include "xgboost/predictor.h"
|
|
#include "xgboost/tree_updater.h"
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
|
|
#include "../../src/data/adapter.h"
|
|
#pragma GCC diagnostic pop
|
|
#include "../../src/common/math.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
|
|
#include "../device_manager.h"
|
|
|
|
namespace xgboost {
|
|
namespace sycl {
|
|
namespace predictor {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(predictor_sycl);
|
|
|
|
/* Wrapper for descriptor of a tree node */
|
|
struct DeviceNode {
|
|
DeviceNode()
|
|
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
|
|
|
|
union NodeValue {
|
|
float leaf_weight;
|
|
float fvalue;
|
|
};
|
|
|
|
int fidx;
|
|
int left_child_idx;
|
|
int right_child_idx;
|
|
NodeValue val;
|
|
|
|
explicit DeviceNode(const RegTree::Node& n) {
|
|
this->left_child_idx = n.LeftChild();
|
|
this->right_child_idx = n.RightChild();
|
|
this->fidx = n.SplitIndex();
|
|
if (n.DefaultLeft()) {
|
|
fidx |= (1U << 31);
|
|
}
|
|
|
|
if (n.IsLeaf()) {
|
|
this->val.leaf_weight = n.LeafValue();
|
|
} else {
|
|
this->val.fvalue = n.SplitCond();
|
|
}
|
|
}
|
|
|
|
bool IsLeaf() const { return left_child_idx == -1; }
|
|
|
|
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
|
|
|
|
bool MissingLeft() const { return (fidx >> 31) != 0; }
|
|
|
|
int MissingIdx() const {
|
|
if (MissingLeft()) {
|
|
return this->left_child_idx;
|
|
} else {
|
|
return this->right_child_idx;
|
|
}
|
|
}
|
|
|
|
float GetFvalue() const { return val.fvalue; }
|
|
|
|
float GetWeight() const { return val.leaf_weight; }
|
|
};
|
|
|
|
/* SYCL implementation of a device model,
|
|
* storing tree structure in USM buffers to provide access from device kernels
|
|
*/
|
|
class DeviceModel {
|
|
public:
|
|
::sycl::queue qu_;
|
|
USMVector<DeviceNode> nodes_;
|
|
USMVector<size_t> tree_segments_;
|
|
USMVector<int> tree_group_;
|
|
size_t tree_beg_;
|
|
size_t tree_end_;
|
|
int num_group_;
|
|
|
|
DeviceModel() {}
|
|
|
|
~DeviceModel() {}
|
|
|
|
void Init(::sycl::queue qu, const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end) {
|
|
qu_ = qu;
|
|
|
|
tree_segments_.Resize(&qu_, (tree_end - tree_begin) + 1);
|
|
int sum = 0;
|
|
tree_segments_[0] = sum;
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
if (model.trees[tree_idx]->HasCategoricalSplit()) {
|
|
LOG(FATAL) << "Categorical features are not yet supported by sycl";
|
|
}
|
|
sum += model.trees[tree_idx]->GetNodes().size();
|
|
tree_segments_[tree_idx - tree_begin + 1] = sum;
|
|
}
|
|
|
|
nodes_.Resize(&qu_, sum);
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
auto& src_nodes = model.trees[tree_idx]->GetNodes();
|
|
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++)
|
|
nodes_[node_idx + tree_segments_[tree_idx - tree_begin]] =
|
|
static_cast<DeviceNode>(src_nodes[node_idx]);
|
|
}
|
|
|
|
tree_group_.Resize(&qu_, model.tree_info.size());
|
|
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
|
|
tree_group_[tree_idx] = model.tree_info[tree_idx];
|
|
|
|
tree_beg_ = tree_begin;
|
|
tree_end_ = tree_end;
|
|
num_group_ = model.learner_model_param->num_output_group;
|
|
}
|
|
};
|
|
|
|
float GetFvalue(int ridx, int fidx, Entry* data, size_t* row_ptr, bool* is_missing) {
|
|
// Binary search
|
|
auto begin_ptr = data + row_ptr[ridx];
|
|
auto end_ptr = data + row_ptr[ridx + 1];
|
|
Entry* previous_middle = nullptr;
|
|
while (end_ptr != begin_ptr) {
|
|
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
|
|
if (middle == previous_middle) {
|
|
break;
|
|
} else {
|
|
previous_middle = middle;
|
|
}
|
|
|
|
if (middle->index == fidx) {
|
|
*is_missing = false;
|
|
return middle->fvalue;
|
|
} else if (middle->index < fidx) {
|
|
begin_ptr = middle;
|
|
} else {
|
|
end_ptr = middle;
|
|
}
|
|
}
|
|
*is_missing = true;
|
|
return 0.0;
|
|
}
|
|
|
|
float GetLeafWeight(int ridx, const DeviceNode* tree, Entry* data, size_t* row_ptr) {
|
|
DeviceNode n = tree[0];
|
|
int node_id = 0;
|
|
bool is_missing;
|
|
while (!n.IsLeaf()) {
|
|
float fvalue = GetFvalue(ridx, n.GetFidx(), data, row_ptr, &is_missing);
|
|
// Missing value
|
|
if (is_missing) {
|
|
n = tree[n.MissingIdx()];
|
|
} else {
|
|
if (fvalue < n.GetFvalue()) {
|
|
node_id = n.left_child_idx;
|
|
n = tree[n.left_child_idx];
|
|
} else {
|
|
node_id = n.right_child_idx;
|
|
n = tree[n.right_child_idx];
|
|
}
|
|
}
|
|
}
|
|
return n.GetWeight();
|
|
}
|
|
|
|
void DevicePredictInternal(::sycl::queue qu,
|
|
sycl::DeviceMatrix* dmat,
|
|
HostDeviceVector<float>* out_preds,
|
|
const gbm::GBTreeModel& model,
|
|
size_t tree_begin,
|
|
size_t tree_end) {
|
|
if (tree_end - tree_begin == 0) return;
|
|
if (out_preds->HostVector().size() == 0) return;
|
|
|
|
DeviceModel device_model;
|
|
device_model.Init(qu, model, tree_begin, tree_end);
|
|
|
|
auto& out_preds_vec = out_preds->HostVector();
|
|
|
|
DeviceNode* nodes = device_model.nodes_.Data();
|
|
::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
|
|
size_t* tree_segments = device_model.tree_segments_.Data();
|
|
int* tree_group = device_model.tree_group_.Data();
|
|
size_t* row_ptr = dmat->row_ptr.Data();
|
|
Entry* data = dmat->data.Data();
|
|
int num_features = dmat->p_mat->Info().num_col_;
|
|
int num_rows = dmat->row_ptr.Size() - 1;
|
|
int num_group = model.learner_model_param->num_output_group;
|
|
|
|
qu.submit([&](::sycl::handler& cgh) {
|
|
auto out_predictions = out_preds_buf.template get_access<::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<>(::sycl::range<1>(num_rows), [=](::sycl::id<1> pid) {
|
|
int global_idx = pid[0];
|
|
if (global_idx >= num_rows) return;
|
|
if (num_group == 1) {
|
|
float sum = 0.0;
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
|
|
sum += GetLeafWeight(global_idx, tree, data, row_ptr);
|
|
}
|
|
out_predictions[global_idx] += sum;
|
|
} else {
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
|
|
int out_prediction_idx = global_idx * num_group + tree_group[tree_idx];
|
|
out_predictions[out_prediction_idx] += GetLeafWeight(global_idx, tree, data, row_ptr);
|
|
}
|
|
}
|
|
});
|
|
}).wait();
|
|
}
|
|
|
|
class Predictor : public xgboost::Predictor {
|
|
protected:
|
|
void InitOutPredictions(const MetaInfo& info,
|
|
HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model) const override {
|
|
CHECK_NE(model.learner_model_param->num_output_group, 0);
|
|
size_t n = model.learner_model_param->num_output_group * info.num_row_;
|
|
const auto& base_margin = info.base_margin_.Data()->HostVector();
|
|
out_preds->Resize(n);
|
|
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
|
|
if (base_margin.size() == n) {
|
|
CHECK_EQ(out_preds->Size(), n);
|
|
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
|
|
} else {
|
|
auto base_score = model.learner_model_param->BaseScore(ctx_)(0);
|
|
if (!base_margin.empty()) {
|
|
std::ostringstream oss;
|
|
oss << "Ignoring the base margin, since it has incorrect length. "
|
|
<< "The base margin must be an array of length ";
|
|
if (model.learner_model_param->num_output_group > 1) {
|
|
oss << "[num_class] * [number of data points], i.e. "
|
|
<< model.learner_model_param->num_output_group << " * " << info.num_row_
|
|
<< " = " << n << ". ";
|
|
} else {
|
|
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
|
|
}
|
|
oss << "Instead, all data points will use "
|
|
<< "base_score = " << base_score;
|
|
LOG(WARNING) << oss.str();
|
|
}
|
|
std::fill(out_preds_h.begin(), out_preds_h.end(), base_score);
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit Predictor(Context const* context) :
|
|
xgboost::Predictor::Predictor{context},
|
|
cpu_predictor(xgboost::Predictor::Create("cpu_predictor", context)) {}
|
|
|
|
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
|
|
const gbm::GBTreeModel &model, uint32_t tree_begin,
|
|
uint32_t tree_end = 0) const override {
|
|
::sycl::queue qu = device_manager.GetQueue(ctx_->Device());
|
|
// TODO(razdoburdin): remove temporary workaround after cache fix
|
|
sycl::DeviceMatrix device_matrix(qu, dmat);
|
|
|
|
auto* out_preds = &predts->predictions;
|
|
if (tree_end == 0) {
|
|
tree_end = model.trees.size();
|
|
}
|
|
|
|
if (tree_begin < tree_end) {
|
|
DevicePredictInternal(qu, &device_matrix, out_preds, model, tree_begin, tree_end);
|
|
}
|
|
}
|
|
|
|
bool InplacePredict(std::shared_ptr<DMatrix> p_m,
|
|
const gbm::GBTreeModel &model, float missing,
|
|
PredictionCacheEntry *out_preds, uint32_t tree_begin,
|
|
unsigned tree_end) const override {
|
|
LOG(WARNING) << "InplacePredict is not yet implemented for SYCL. CPU Predictor is used.";
|
|
return cpu_predictor->InplacePredict(p_m, model, missing, out_preds, tree_begin, tree_end);
|
|
}
|
|
|
|
void PredictInstance(const SparsePage::Inst& inst,
|
|
std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit,
|
|
bool is_column_split) const override {
|
|
LOG(WARNING) << "PredictInstance is not yet implemented for SYCL. CPU Predictor is used.";
|
|
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit, is_column_split);
|
|
}
|
|
|
|
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
|
|
LOG(WARNING) << "PredictLeaf is not yet implemented for SYCL. CPU Predictor is used.";
|
|
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
|
|
}
|
|
|
|
void PredictContribution(DMatrix* p_fmat, HostDeviceVector<float>* out_contribs,
|
|
const gbm::GBTreeModel& model, uint32_t ntree_limit,
|
|
const std::vector<bst_float>* tree_weights,
|
|
bool approximate, int condition,
|
|
unsigned condition_feature) const override {
|
|
LOG(WARNING) << "PredictContribution is not yet implemented for SYCL. CPU Predictor is used.";
|
|
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights,
|
|
approximate, condition, condition_feature);
|
|
}
|
|
|
|
void PredictInteractionContributions(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_contribs,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit,
|
|
const std::vector<bst_float>* tree_weights,
|
|
bool approximate) const override {
|
|
LOG(WARNING) << "PredictInteractionContributions is not yet implemented for SYCL. "
|
|
<< "CPU Predictor is used.";
|
|
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit,
|
|
tree_weights, approximate);
|
|
}
|
|
|
|
private:
|
|
DeviceManager device_manager;
|
|
|
|
std::unique_ptr<xgboost::Predictor> cpu_predictor;
|
|
};
|
|
|
|
XGBOOST_REGISTER_PREDICTOR(Predictor, "sycl_predictor")
|
|
.describe("Make predictions using SYCL.")
|
|
.set_body([](Context const* ctx) { return new Predictor(ctx); });
|
|
|
|
} // namespace predictor
|
|
} // namespace sycl
|
|
} // namespace xgboost
|