xgboost/plugin/sycl/predictor/predictor.cc
Dmitry Razdoburdin 381f1d3dc9
Add support inference on SYCL devices (#9800)
---------

Co-authored-by: Dmitry Razdoburdin <>
Co-authored-by: Nikolay Petrov <nikolay.a.petrov@intel.com>
Co-authored-by: Alexandra <alexandra.epanchinzeva@intel.com>
2023-12-04 16:15:57 +08:00

343 lines
12 KiB
C++
Executable File

/*!
* Copyright by Contributors 2017-2023
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#pragma GCC diagnostic ignored "-W#pragma-messages"
#include <rabit/rabit.h>
#pragma GCC diagnostic pop
#include <cstddef>
#include <limits>
#include <mutex>
#include <CL/sycl.hpp>
#include "../data.h"
#include "dmlc/registry.h"
#include "xgboost/tree_model.h"
#include "xgboost/predictor.h"
#include "xgboost/tree_updater.h"
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wtautological-constant-compare"
#include "../../src/data/adapter.h"
#pragma GCC diagnostic pop
#include "../../src/common/math.h"
#include "../../src/gbm/gbtree_model.h"
#include "../device_manager.h"
namespace xgboost {
namespace sycl {
namespace predictor {
DMLC_REGISTRY_FILE_TAG(predictor_sycl);
/* Wrapper for descriptor of a tree node */
struct DeviceNode {
DeviceNode()
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
union NodeValue {
float leaf_weight;
float fvalue;
};
int fidx;
int left_child_idx;
int right_child_idx;
NodeValue val;
explicit DeviceNode(const RegTree::Node& n) {
this->left_child_idx = n.LeftChild();
this->right_child_idx = n.RightChild();
this->fidx = n.SplitIndex();
if (n.DefaultLeft()) {
fidx |= (1U << 31);
}
if (n.IsLeaf()) {
this->val.leaf_weight = n.LeafValue();
} else {
this->val.fvalue = n.SplitCond();
}
}
bool IsLeaf() const { return left_child_idx == -1; }
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
bool MissingLeft() const { return (fidx >> 31) != 0; }
int MissingIdx() const {
if (MissingLeft()) {
return this->left_child_idx;
} else {
return this->right_child_idx;
}
}
float GetFvalue() const { return val.fvalue; }
float GetWeight() const { return val.leaf_weight; }
};
/* SYCL implementation of a device model,
* storing tree structure in USM buffers to provide access from device kernels
*/
class DeviceModel {
public:
::sycl::queue qu_;
USMVector<DeviceNode> nodes_;
USMVector<size_t> tree_segments_;
USMVector<int> tree_group_;
size_t tree_beg_;
size_t tree_end_;
int num_group_;
DeviceModel() {}
~DeviceModel() {}
void Init(::sycl::queue qu, const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end) {
qu_ = qu;
tree_segments_.Resize(&qu_, (tree_end - tree_begin) + 1);
int sum = 0;
tree_segments_[0] = sum;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
if (model.trees[tree_idx]->HasCategoricalSplit()) {
LOG(FATAL) << "Categorical features are not yet supported by sycl";
}
sum += model.trees[tree_idx]->GetNodes().size();
tree_segments_[tree_idx - tree_begin + 1] = sum;
}
nodes_.Resize(&qu_, sum);
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
auto& src_nodes = model.trees[tree_idx]->GetNodes();
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++)
nodes_[node_idx + tree_segments_[tree_idx - tree_begin]] =
static_cast<DeviceNode>(src_nodes[node_idx]);
}
tree_group_.Resize(&qu_, model.tree_info.size());
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
tree_group_[tree_idx] = model.tree_info[tree_idx];
tree_beg_ = tree_begin;
tree_end_ = tree_end;
num_group_ = model.learner_model_param->num_output_group;
}
};
float GetFvalue(int ridx, int fidx, Entry* data, size_t* row_ptr, bool* is_missing) {
// Binary search
auto begin_ptr = data + row_ptr[ridx];
auto end_ptr = data + row_ptr[ridx + 1];
Entry* previous_middle = nullptr;
while (end_ptr != begin_ptr) {
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
if (middle == previous_middle) {
break;
} else {
previous_middle = middle;
}
if (middle->index == fidx) {
*is_missing = false;
return middle->fvalue;
} else if (middle->index < fidx) {
begin_ptr = middle;
} else {
end_ptr = middle;
}
}
*is_missing = true;
return 0.0;
}
float GetLeafWeight(int ridx, const DeviceNode* tree, Entry* data, size_t* row_ptr) {
DeviceNode n = tree[0];
int node_id = 0;
bool is_missing;
while (!n.IsLeaf()) {
float fvalue = GetFvalue(ridx, n.GetFidx(), data, row_ptr, &is_missing);
// Missing value
if (is_missing) {
n = tree[n.MissingIdx()];
} else {
if (fvalue < n.GetFvalue()) {
node_id = n.left_child_idx;
n = tree[n.left_child_idx];
} else {
node_id = n.right_child_idx;
n = tree[n.right_child_idx];
}
}
}
return n.GetWeight();
}
void DevicePredictInternal(::sycl::queue qu,
sycl::DeviceMatrix* dmat,
HostDeviceVector<float>* out_preds,
const gbm::GBTreeModel& model,
size_t tree_begin,
size_t tree_end) {
if (tree_end - tree_begin == 0) return;
if (out_preds->HostVector().size() == 0) return;
DeviceModel device_model;
device_model.Init(qu, model, tree_begin, tree_end);
auto& out_preds_vec = out_preds->HostVector();
DeviceNode* nodes = device_model.nodes_.Data();
::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
size_t* tree_segments = device_model.tree_segments_.Data();
int* tree_group = device_model.tree_group_.Data();
size_t* row_ptr = dmat->row_ptr.Data();
Entry* data = dmat->data.Data();
int num_features = dmat->p_mat->Info().num_col_;
int num_rows = dmat->row_ptr.Size() - 1;
int num_group = model.learner_model_param->num_output_group;
qu.submit([&](::sycl::handler& cgh) {
auto out_predictions = out_preds_buf.template get_access<::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(::sycl::range<1>(num_rows), [=](::sycl::id<1> pid) {
int global_idx = pid[0];
if (global_idx >= num_rows) return;
if (num_group == 1) {
float sum = 0.0;
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
sum += GetLeafWeight(global_idx, tree, data, row_ptr);
}
out_predictions[global_idx] += sum;
} else {
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
const DeviceNode* tree = nodes + tree_segments[tree_idx - tree_begin];
int out_prediction_idx = global_idx * num_group + tree_group[tree_idx];
out_predictions[out_prediction_idx] += GetLeafWeight(global_idx, tree, data, row_ptr);
}
}
});
}).wait();
}
class Predictor : public xgboost::Predictor {
protected:
void InitOutPredictions(const MetaInfo& info,
HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model) const override {
CHECK_NE(model.learner_model_param->num_output_group, 0);
size_t n = model.learner_model_param->num_output_group * info.num_row_;
const auto& base_margin = info.base_margin_.Data()->HostVector();
out_preds->Resize(n);
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
if (base_margin.size() == n) {
CHECK_EQ(out_preds->Size(), n);
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
} else {
auto base_score = model.learner_model_param->BaseScore(ctx_)(0);
if (!base_margin.empty()) {
std::ostringstream oss;
oss << "Ignoring the base margin, since it has incorrect length. "
<< "The base margin must be an array of length ";
if (model.learner_model_param->num_output_group > 1) {
oss << "[num_class] * [number of data points], i.e. "
<< model.learner_model_param->num_output_group << " * " << info.num_row_
<< " = " << n << ". ";
} else {
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
}
oss << "Instead, all data points will use "
<< "base_score = " << base_score;
LOG(WARNING) << oss.str();
}
std::fill(out_preds_h.begin(), out_preds_h.end(), base_score);
}
}
public:
explicit Predictor(Context const* context) :
xgboost::Predictor::Predictor{context},
cpu_predictor(xgboost::Predictor::Create("cpu_predictor", context)) {}
void PredictBatch(DMatrix *dmat, PredictionCacheEntry *predts,
const gbm::GBTreeModel &model, uint32_t tree_begin,
uint32_t tree_end = 0) const override {
::sycl::queue qu = device_manager.GetQueue(ctx_->Device());
// TODO(razdoburdin): remove temporary workaround after cache fix
sycl::DeviceMatrix device_matrix(qu, dmat);
auto* out_preds = &predts->predictions;
if (tree_end == 0) {
tree_end = model.trees.size();
}
if (tree_begin < tree_end) {
DevicePredictInternal(qu, &device_matrix, out_preds, model, tree_begin, tree_end);
}
}
bool InplacePredict(std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds, uint32_t tree_begin,
unsigned tree_end) const override {
LOG(WARNING) << "InplacePredict is not yet implemented for SYCL. CPU Predictor is used.";
return cpu_predictor->InplacePredict(p_m, model, missing, out_preds, tree_begin, tree_end);
}
void PredictInstance(const SparsePage::Inst& inst,
std::vector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit,
bool is_column_split) const override {
LOG(WARNING) << "PredictInstance is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit, is_column_split);
}
void PredictLeaf(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_preds,
const gbm::GBTreeModel& model, unsigned ntree_limit) const override {
LOG(WARNING) << "PredictLeaf is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
}
void PredictContribution(DMatrix* p_fmat, HostDeviceVector<float>* out_contribs,
const gbm::GBTreeModel& model, uint32_t ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate, int condition,
unsigned condition_feature) const override {
LOG(WARNING) << "PredictContribution is not yet implemented for SYCL. CPU Predictor is used.";
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights,
approximate, condition, condition_feature);
}
void PredictInteractionContributions(DMatrix* p_fmat, HostDeviceVector<bst_float>* out_contribs,
const gbm::GBTreeModel& model, unsigned ntree_limit,
const std::vector<bst_float>* tree_weights,
bool approximate) const override {
LOG(WARNING) << "PredictInteractionContributions is not yet implemented for SYCL. "
<< "CPU Predictor is used.";
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit,
tree_weights, approximate);
}
private:
DeviceManager device_manager;
std::unique_ptr<xgboost::Predictor> cpu_predictor;
};
XGBOOST_REGISTER_PREDICTOR(Predictor, "sycl_predictor")
.describe("Make predictions using SYCL.")
.set_body([](Context const* ctx) { return new Predictor(ctx); });
} // namespace predictor
} // namespace sycl
} // namespace xgboost