Expose predictLeaf functionality in Scala XGBoostModel (#1351)

This commit is contained in:
convexquad 2016-07-12 03:55:24 -07:00 committed by Nan Zhu
parent 75d9be55de
commit 313764b3be
2 changed files with 37 additions and 6 deletions

View File

@ -59,3 +59,4 @@ List of Contributors
* [Sam Thomson](https://github.com/sammthomson)
* [ganesh-krishnan](https://github.com/ganesh-krishnan)
* [Damien Carol](https://github.com/damiencarol)
* [Alex Bain](https://github.com/convexquad)

View File

@ -26,9 +26,9 @@ import ml.dmlc.xgboost4j.scala.{DMatrix, Booster}
class XGBoostModel(_booster: Booster) extends Serializable {
/**
* Predict result with the given testset (represented as RDD)
* Predict result with the given test set (represented as RDD)
*
* @param testSet test set representd as RDD
* @param testSet test set represented as RDD
* @param useExternalCache whether to use external cache for the test set
*/
def predict(testSet: RDD[Vector], useExternalCache: Boolean = false): RDD[Array[Array[Float]]] = {
@ -53,8 +53,9 @@ class XGBoostModel(_booster: Booster) extends Serializable {
}
/**
* Predict result with the given testset (represented as RDD)
* @param testSet test set representd as RDD
* Predict result with the given test set (represented as RDD)
*
* @param testSet test set represented as RDD
* @param missingValue the specified value to represent the missing value
*/
def predict(testSet: RDD[DenseVector], missingValue: Float): RDD[Array[Array[Float]]] = {
@ -78,12 +79,41 @@ class XGBoostModel(_booster: Booster) extends Serializable {
}
/**
* predict result given the test data (represented as DMatrix)
* Predict result with the given test set (represented as DMatrix)
*
* @param testSet test set represented as DMatrix
*/
def predict(testSet: DMatrix): Array[Array[Float]] = {
_booster.predict(testSet, true, 0)
}
/**
* Predict leaf instances with the given test set (represented as RDD)
*
* @param testSet test set represented as RDD
*/
def predictLeaves(testSet: RDD[Vector]): RDD[Array[Array[Float]]] = {
import DataUtils._
val broadcastBooster = testSet.sparkContext.broadcast(_booster)
testSet.mapPartitions { testSamples =>
if (testSamples.hasNext) {
val dMatrix = new DMatrix(new JDMatrix(testSamples, null))
Iterator(broadcastBooster.value.predictLeaf(dMatrix, 0))
} else {
Iterator()
}
}
}
/**
* Predict leaf instances with the given test set (represented as DMatrix)
*
* @param testSet test set represented as DMatrix
*/
def predictLeaves(testSet: DMatrix): Array[Array[Float]] = {
_booster.predictLeaf(testSet, 0)
}
/**
* Save the model as to HDFS-compatible file system.
*
@ -97,7 +127,7 @@ class XGBoostModel(_booster: Booster) extends Serializable {
}
/**
* get the booster instance of this model
* Get the booster instance of this model
*/
def booster: Booster = _booster
}