Implement weighted sketching for adapter. (#5760)

* Bounded memory tests.
* Fixed memory estimation.
This commit is contained in:
Jiaming Yuan 2020-06-12 06:20:39 +08:00 committed by GitHub
parent c35be9dc40
commit 3028fa6b42
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 443 additions and 109 deletions

View File

@ -140,6 +140,10 @@ void HistogramCuts::Build(DMatrix* dmat, uint32_t const max_num_bins) {
bool CutsBuilder::UseGroup(DMatrix* dmat) { bool CutsBuilder::UseGroup(DMatrix* dmat) {
auto& info = dmat->Info(); auto& info = dmat->Info();
return CutsBuilder::UseGroup(info);
}
bool CutsBuilder::UseGroup(MetaInfo const& info) {
size_t const num_groups = info.group_ptr_.size() == 0 ? size_t const num_groups = info.group_ptr_.size() == 0 ?
0 : info.group_ptr_.size() - 1; 0 : info.group_ptr_.size() - 1;
// Use group index for weights? // Use group index for weights?

View File

@ -1,5 +1,5 @@
/*! /*!
* Copyright 2018 XGBoost contributors * Copyright 2018~2020 XGBoost contributors
*/ */
#include <xgboost/logging.h> #include <xgboost/logging.h>
@ -28,24 +28,10 @@
namespace xgboost { namespace xgboost {
namespace common { namespace common {
// Count the entries in each column and exclusive scan
void GetColumnSizesScan(int device,
dh::caching_device_vector<size_t>* column_sizes_scan,
Span<const Entry> entries, size_t num_columns) {
column_sizes_scan->resize(num_columns + 1, 0);
auto d_column_sizes_scan = column_sizes_scan->data().get();
auto d_entries = entries.data();
dh::LaunchN(device, entries.size(), [=] __device__(size_t idx) {
auto& e = d_entries[idx];
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&d_column_sizes_scan[e.index]),
static_cast<unsigned long long>(1)); // NOLINT
});
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan->begin(),
column_sizes_scan->end(), column_sizes_scan->begin());
}
constexpr float SketchContainer::kFactor;
// Count the entries in each column and exclusive scan
void ExtractCuts(int device, void ExtractCuts(int device,
size_t num_cuts_per_feature, size_t num_cuts_per_feature,
Span<Entry const> sorted_data, Span<Entry const> sorted_data,
@ -158,6 +144,23 @@ void ProcessBatch(int device, const SparsePage& page, size_t begin, size_t end,
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan); sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
} }
void SortByWeight(dh::XGBCachingDeviceAllocator<char>* alloc,
dh::caching_device_vector<float>* weights,
dh::caching_device_vector<Entry>* sorted_entries) {
// Sort both entries and wegihts.
thrust::sort_by_key(thrust::cuda::par(*alloc), sorted_entries->begin(),
sorted_entries->end(), weights->begin(),
EntryCompareOp());
// Scan weights
thrust::inclusive_scan_by_key(thrust::cuda::par(*alloc),
sorted_entries->begin(), sorted_entries->end(),
weights->begin(), weights->begin(),
[=] __device__(const Entry& a, const Entry& b) {
return a.index == b.index;
});
}
void ProcessWeightedBatch(int device, const SparsePage& page, void ProcessWeightedBatch(int device, const SparsePage& page,
Span<const float> weights, size_t begin, size_t end, Span<const float> weights, size_t begin, size_t end,
SketchContainer* sketch_container, int num_cuts_per_feature, SketchContainer* sketch_container, int num_cuts_per_feature,
@ -201,19 +204,7 @@ void ProcessWeightedBatch(int device, const SparsePage& page,
d_temp_weights[idx] = weights[ridx + base_rowid]; d_temp_weights[idx] = weights[ridx + base_rowid];
}); });
} }
SortByWeight(&alloc, &temp_weights, &sorted_entries);
// Sort both entries and wegihts.
thrust::sort_by_key(thrust::cuda::par(alloc), sorted_entries.begin(),
sorted_entries.end(), temp_weights.begin(),
EntryCompareOp());
// Scan weights
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
sorted_entries.begin(), sorted_entries.end(),
temp_weights.begin(), temp_weights.begin(),
[=] __device__(const Entry& a, const Entry& b) {
return a.index == b.index;
});
dh::caching_device_vector<size_t> column_sizes_scan; dh::caching_device_vector<size_t> column_sizes_scan;
GetColumnSizesScan(device, &column_sizes_scan, GetColumnSizesScan(device, &column_sizes_scan,
@ -239,13 +230,9 @@ HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
// Configure batch size based on available memory // Configure batch size based on available memory
bool has_weights = dmat->Info().weights_.Size() > 0; bool has_weights = dmat->Info().weights_.Size() > 0;
size_t num_cuts_per_feature = RequiredSampleCuts(max_bins, dmat->Info().num_row_); size_t num_cuts_per_feature = RequiredSampleCuts(max_bins, dmat->Info().num_row_);
if (sketch_batch_num_elements == 0) { sketch_batch_num_elements = SketchBatchNumElements(
int bytes_per_element = has_weights ? 24 : 16; sketch_batch_num_elements,
size_t bytes_cuts = num_cuts_per_feature * dmat->Info().num_col_ * sizeof(SketchEntry); dmat->Info().num_col_, device, num_cuts_per_feature, has_weights);
// use up to 80% of available space
sketch_batch_num_elements =
(dh::AvailableMemory(device) - bytes_cuts) * 0.8 / bytes_per_element;
}
HistogramCuts cuts; HistogramCuts cuts;
DenseCuts dense_cuts(&cuts); DenseCuts dense_cuts(&cuts);
@ -256,12 +243,12 @@ HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
for (const auto& batch : dmat->GetBatches<SparsePage>()) { for (const auto& batch : dmat->GetBatches<SparsePage>()) {
size_t batch_nnz = batch.data.Size(); size_t batch_nnz = batch.data.Size();
auto const& info = dmat->Info(); auto const& info = dmat->Info();
dh::caching_device_vector<uint32_t> groups(info.group_ptr_.cbegin(),
info.group_ptr_.cend());
for (auto begin = 0ull; begin < batch_nnz; begin += sketch_batch_num_elements) { for (auto begin = 0ull; begin < batch_nnz; begin += sketch_batch_num_elements) {
size_t end = std::min(batch_nnz, size_t(begin + sketch_batch_num_elements)); size_t end = std::min(batch_nnz, size_t(begin + sketch_batch_num_elements));
if (has_weights) { if (has_weights) {
bool is_ranking = CutsBuilder::UseGroup(dmat); bool is_ranking = CutsBuilder::UseGroup(dmat);
dh::caching_device_vector<uint32_t> groups(info.group_ptr_.cbegin(),
info.group_ptr_.cend());
ProcessWeightedBatch( ProcessWeightedBatch(
device, batch, dmat->Info().weights_.ConstDeviceSpan(), begin, end, device, batch, dmat->Info().weights_.ConstDeviceSpan(), begin, end,
&sketch_container, &sketch_container,

View File

@ -1,9 +1,13 @@
/*!
* Copyright 2020 XGBoost contributors
*/
#ifndef COMMON_HIST_UTIL_CUH_ #ifndef COMMON_HIST_UTIL_CUH_
#define COMMON_HIST_UTIL_CUH_ #define COMMON_HIST_UTIL_CUH_
#include <thrust/host_vector.h> #include <thrust/host_vector.h>
#include "hist_util.h" #include "hist_util.h"
#include "threading_utils.h"
#include "device_helpers.cuh" #include "device_helpers.cuh"
#include "../data/device_adapter.cuh" #include "../data/device_adapter.cuh"
@ -23,6 +27,7 @@ using SketchEntry = WQSketch::Entry;
struct SketchContainer { struct SketchContainer {
std::vector<DenseCuts::WQSketch> sketches_; // NOLINT std::vector<DenseCuts::WQSketch> sketches_; // NOLINT
static constexpr int kOmpNumColsParallelizeLimit = 1000; static constexpr int kOmpNumColsParallelizeLimit = 1000;
static constexpr float kFactor = 8;
SketchContainer(int max_bin, size_t num_columns, size_t num_rows) { SketchContainer(int max_bin, size_t num_columns, size_t num_rows) {
// Initialize Sketches for this dmatrix // Initialize Sketches for this dmatrix
@ -93,11 +98,71 @@ void ExtractCuts(int device,
Span<size_t const> column_sizes_scan, Span<size_t const> column_sizes_scan,
Span<SketchEntry> out_cuts); Span<SketchEntry> out_cuts);
// Count the entries in each column and exclusive scan
inline void GetColumnSizesScan(int device,
dh::caching_device_vector<size_t>* column_sizes_scan,
Span<const Entry> entries, size_t num_columns) {
column_sizes_scan->resize(num_columns + 1, 0);
auto d_column_sizes_scan = column_sizes_scan->data().get();
auto d_entries = entries.data();
dh::LaunchN(device, entries.size(), [=] __device__(size_t idx) {
auto& e = d_entries[idx];
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&d_column_sizes_scan[e.index]),
static_cast<unsigned long long>(1)); // NOLINT
});
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan->begin(),
column_sizes_scan->end(), column_sizes_scan->begin());
}
// For adapter.
template <typename Iter>
void GetColumnSizesScan(int device, size_t num_columns,
Iter batch_iter, data::IsValidFunctor is_valid,
size_t begin, size_t end,
dh::caching_device_vector<size_t>* column_sizes_scan) {
dh::XGBCachingDeviceAllocator<char> alloc;
column_sizes_scan->resize(num_columns + 1, 0);
auto d_column_sizes_scan = column_sizes_scan->data().get();
dh::LaunchN(device, end - begin, [=] __device__(size_t idx) {
auto e = batch_iter[begin + idx];
if (is_valid(e)) {
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&d_column_sizes_scan[e.column_idx]),
static_cast<unsigned long long>(1)); // NOLINT
}
});
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan->begin(),
column_sizes_scan->end(), column_sizes_scan->begin());
}
inline size_t BytesPerElement(bool has_weight) {
// Double the memory usage for sorting. We need to assign weight for each element, so
// sizeof(float) is added to all elements.
return (has_weight ? sizeof(Entry) + sizeof(float) : sizeof(Entry)) * 2;
}
inline size_t SketchBatchNumElements(size_t sketch_batch_num_elements,
size_t columns, int device,
size_t num_cuts, bool has_weight) {
if (sketch_batch_num_elements == 0) {
size_t bytes_per_element = BytesPerElement(has_weight);
size_t bytes_cuts = num_cuts * columns * sizeof(SketchEntry);
size_t bytes_num_columns = (columns + 1) * sizeof(size_t);
// use up to 80% of available space
sketch_batch_num_elements = (dh::AvailableMemory(device) -
bytes_cuts - bytes_num_columns) *
0.8 / bytes_per_element;
}
return sketch_batch_num_elements;
}
// Compute number of sample cuts needed on local node to maintain accuracy // Compute number of sample cuts needed on local node to maintain accuracy
// We take more cuts than needed and then reduce them later // We take more cuts than needed and then reduce them later
inline size_t RequiredSampleCuts(int max_bins, size_t num_rows) { inline size_t RequiredSampleCuts(int max_bins, size_t num_rows) {
constexpr int kFactor = 8; double eps = 1.0 / (SketchContainer::kFactor * max_bins);
double eps = 1.0 / (kFactor * max_bins);
size_t dummy_nlevel; size_t dummy_nlevel;
size_t num_cuts; size_t num_cuts;
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel( WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
@ -109,52 +174,60 @@ inline size_t RequiredSampleCuts(int max_bins, size_t num_rows) {
HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins, HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
size_t sketch_batch_num_elements = 0); size_t sketch_batch_num_elements = 0);
template <typename AdapterT>
void ProcessBatch(AdapterT* adapter, size_t begin, size_t end, float missing, template <typename AdapterBatch, typename BatchIter>
SketchContainer* sketch_container, int num_cuts) { void MakeEntriesFromAdapter(AdapterBatch const& batch, BatchIter batch_iter,
dh::XGBCachingDeviceAllocator<char> alloc; Range1d range, float missing,
adapter->BeforeFirst(); size_t columns, int device,
adapter->Next(); thrust::host_vector<size_t>* host_column_sizes_scan,
auto &batch = adapter->Value(); dh::caching_device_vector<size_t>* column_sizes_scan,
// Enforce single batch dh::caching_device_vector<Entry>* sorted_entries) {
CHECK(!adapter->Next());
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
auto entry_iter = dh::MakeTransformIterator<Entry>( auto entry_iter = dh::MakeTransformIterator<Entry>(
thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) { thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) {
return Entry(batch.GetElement(idx).column_idx, return Entry(batch.GetElement(idx).column_idx,
batch.GetElement(idx).value); batch.GetElement(idx).value);
}); });
// Work out how many valid entries we have in each column
dh::caching_device_vector<size_t> column_sizes_scan(adapter->NumColumns() + 1,
0);
auto d_column_sizes_scan = column_sizes_scan.data().get();
data::IsValidFunctor is_valid(missing); data::IsValidFunctor is_valid(missing);
dh::LaunchN(adapter->DeviceIdx(), end - begin, [=] __device__(size_t idx) { // Work out how many valid entries we have in each column
auto e = batch_iter[begin + idx]; GetColumnSizesScan(device, columns,
if (is_valid(e)) { batch_iter, is_valid,
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT range.begin(), range.end(),
&d_column_sizes_scan[e.column_idx]), column_sizes_scan);
static_cast<unsigned long long>(1)); // NOLINT host_column_sizes_scan->resize(column_sizes_scan->size());
} thrust::copy(column_sizes_scan->begin(), column_sizes_scan->end(),
}); host_column_sizes_scan->begin());
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan.begin(),
column_sizes_scan.end(), column_sizes_scan.begin()); size_t num_valid = host_column_sizes_scan->back();
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
size_t num_valid = host_column_sizes_scan.back();
// Copy current subset of valid elements into temporary storage and sort // Copy current subset of valid elements into temporary storage and sort
dh::caching_device_vector<Entry> sorted_entries(num_valid); sorted_entries->resize(num_valid);
thrust::copy_if(thrust::cuda::par(alloc), entry_iter + begin, dh::XGBCachingDeviceAllocator<char> alloc;
entry_iter + end, sorted_entries.begin(), is_valid); thrust::copy_if(thrust::cuda::par(alloc), entry_iter + range.begin(),
entry_iter + range.end(), sorted_entries->begin(), is_valid);
}
template <typename AdapterBatch>
void ProcessSlidingWindow(AdapterBatch const& batch, int device, size_t columns,
size_t begin, size_t end, float missing,
SketchContainer* sketch_container, int num_cuts) {
// Copy current subset of valid elements into temporary storage and sort
dh::caching_device_vector<Entry> sorted_entries;
dh::caching_device_vector<size_t> column_sizes_scan;
thrust::host_vector<size_t> host_column_sizes_scan;
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
MakeEntriesFromAdapter(batch, batch_iter, {begin, end}, missing, columns, device,
&host_column_sizes_scan,
&column_sizes_scan,
&sorted_entries);
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(), thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
sorted_entries.end(), EntryCompareOp()); sorted_entries.end(), EntryCompareOp());
// Extract the cuts from all columns concurrently // Extract the cuts from all columns concurrently
dh::caching_device_vector<SketchEntry> cuts(adapter->NumColumns() * num_cuts); dh::caching_device_vector<SketchEntry> cuts(columns * num_cuts);
ExtractCuts(adapter->DeviceIdx(), num_cuts, ExtractCuts(device, num_cuts,
dh::ToSpan(sorted_entries), dh::ToSpan(sorted_entries),
dh::ToSpan(column_sizes_scan), dh::ToSpan(column_sizes_scan),
dh::ToSpan(cuts)); dh::ToSpan(cuts));
@ -164,27 +237,105 @@ void ProcessBatch(AdapterT* adapter, size_t begin, size_t end, float missing,
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan); sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
} }
void ExtractWeightedCuts(int device,
size_t num_cuts_per_feature,
Span<Entry> sorted_data,
Span<float> weights_scan,
Span<size_t> column_sizes_scan,
Span<SketchEntry> cuts);
void SortByWeight(dh::XGBCachingDeviceAllocator<char>* alloc,
dh::caching_device_vector<float>* weights,
dh::caching_device_vector<Entry>* sorted_entries);
template <typename Batch>
void ProcessWeightedSlidingWindow(Batch batch, MetaInfo const& info,
int num_cuts_per_feature,
bool is_ranking, float missing, int device,
size_t columns, size_t begin, size_t end,
SketchContainer *sketch_container) {
dh::XGBCachingDeviceAllocator<char> alloc;
dh::safe_cuda(cudaSetDevice(device));
info.weights_.SetDevice(device);
auto weights = info.weights_.ConstDeviceSpan();
dh::caching_device_vector<bst_group_t> group_ptr(info.group_ptr_);
auto d_group_ptr = dh::ToSpan(group_ptr);
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
thrust::make_counting_iterator(0llu),
[=] __device__(size_t idx) { return batch.GetElement(idx); });
dh::caching_device_vector<Entry> sorted_entries;
dh::caching_device_vector<size_t> column_sizes_scan;
thrust::host_vector<size_t> host_column_sizes_scan;
MakeEntriesFromAdapter(batch, batch_iter,
{begin, end}, missing, columns, device,
&host_column_sizes_scan,
&column_sizes_scan,
&sorted_entries);
data::IsValidFunctor is_valid(missing);
dh::caching_device_vector<float> temp_weights(sorted_entries.size());
auto d_temp_weights = dh::ToSpan(temp_weights);
if (is_ranking) {
auto const weight_iter = dh::MakeTransformIterator<float>(
thrust::make_constant_iterator(0lu),
[=]__device__(size_t idx) -> float {
auto ridx = batch.GetElement(idx).row_idx;
auto it = thrust::upper_bound(thrust::seq,
d_group_ptr.cbegin(), d_group_ptr.cend(),
ridx) - 1;
bst_group_t group = thrust::distance(d_group_ptr.cbegin(), it);
return weights[group];
});
auto retit = thrust::copy_if(thrust::cuda::par(alloc),
weight_iter + begin, weight_iter + end,
batch_iter + begin,
d_temp_weights.data(), // output
is_valid);
CHECK_EQ(retit - d_temp_weights.data(), d_temp_weights.size());
} else {
auto const weight_iter = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0lu),
[=]__device__(size_t idx) -> float {
return weights[batch.GetElement(idx).row_idx];
});
auto retit = thrust::copy_if(thrust::cuda::par(alloc),
weight_iter + begin, weight_iter + end,
batch_iter + begin,
d_temp_weights.data(), // output
is_valid);
CHECK_EQ(retit - d_temp_weights.data(), d_temp_weights.size());
}
SortByWeight(&alloc, &temp_weights, &sorted_entries);
// Extract cuts
dh::caching_device_vector<SketchEntry> cuts(columns * num_cuts_per_feature);
ExtractWeightedCuts(device, num_cuts_per_feature,
dh::ToSpan(sorted_entries),
dh::ToSpan(temp_weights),
dh::ToSpan(column_sizes_scan),
dh::ToSpan(cuts));
// add cuts into sketches
thrust::host_vector<SketchEntry> host_cuts(cuts);
sketch_container->Push(num_cuts_per_feature, host_cuts, host_column_sizes_scan);
}
template <typename AdapterT> template <typename AdapterT>
HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins, HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
float missing, float missing,
size_t sketch_batch_num_elements = 0) { size_t sketch_batch_num_elements = 0) {
size_t num_cuts = RequiredSampleCuts(num_bins, adapter->NumRows()); size_t num_cuts = RequiredSampleCuts(num_bins, adapter->NumRows());
if (sketch_batch_num_elements == 0) {
int bytes_per_element = 16;
size_t bytes_cuts = num_cuts * adapter->NumColumns() * sizeof(SketchEntry);
size_t bytes_num_columns = (adapter->NumColumns() + 1) * sizeof(size_t);
// use up to 80% of available space
sketch_batch_num_elements = (dh::AvailableMemory(adapter->DeviceIdx()) -
bytes_cuts - bytes_num_columns) *
0.8 / bytes_per_element;
}
CHECK(adapter->NumRows() != data::kAdapterUnknownSize); CHECK(adapter->NumRows() != data::kAdapterUnknownSize);
CHECK(adapter->NumColumns() != data::kAdapterUnknownSize); CHECK(adapter->NumColumns() != data::kAdapterUnknownSize);
adapter->BeforeFirst(); adapter->BeforeFirst();
adapter->Next(); adapter->Next();
auto& batch = adapter->Value(); auto& batch = adapter->Value();
sketch_batch_num_elements = SketchBatchNumElements(
sketch_batch_num_elements,
adapter->NumColumns(), adapter->DeviceIdx(), num_cuts, false);
// Enforce single batch // Enforce single batch
CHECK(!adapter->Next()); CHECK(!adapter->Next());
@ -197,12 +348,54 @@ HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
for (auto begin = 0ull; begin < batch.Size(); for (auto begin = 0ull; begin < batch.Size();
begin += sketch_batch_num_elements) { begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements)); size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessBatch(adapter, begin, end, missing, &sketch_container, num_cuts); auto const& batch = adapter->Value();
ProcessSlidingWindow(batch, adapter->DeviceIdx(), adapter->NumColumns(),
begin, end, missing, &sketch_container, num_cuts);
} }
dense_cuts.Init(&sketch_container.sketches_, num_bins, adapter->NumRows()); dense_cuts.Init(&sketch_container.sketches_, num_bins, adapter->NumRows());
return cuts; return cuts;
} }
template <typename Batch>
void AdapterDeviceSketch(Batch batch, int num_bins,
float missing, int device,
SketchContainer* sketch_container,
size_t sketch_batch_num_elements = 0) {
size_t num_rows = batch.NumRows();
size_t num_cols = batch.NumCols();
size_t num_cuts = RequiredSampleCuts(num_bins, num_rows);
sketch_batch_num_elements = SketchBatchNumElements(
sketch_batch_num_elements,
num_cols, device, num_cuts, false);
for (auto begin = 0ull; begin < batch.Size(); begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessSlidingWindow(batch, device, num_cols,
begin, end, missing, sketch_container, num_cuts);
}
}
template <typename Batch>
void AdapterDeviceSketchWeighted(Batch batch, int num_bins,
MetaInfo const& info,
float missing,
int device,
SketchContainer* sketch_container,
size_t sketch_batch_num_elements = 0) {
size_t num_rows = batch.NumRows();
size_t num_cols = batch.NumCols();
size_t num_cuts = RequiredSampleCuts(num_bins, num_rows);
sketch_batch_num_elements = SketchBatchNumElements(
sketch_batch_num_elements,
num_cols, device, num_cuts, true);
for (auto begin = 0ull; begin < batch.Size(); begin += sketch_batch_num_elements) {
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
ProcessWeightedSlidingWindow(batch, info,
num_cuts,
CutsBuilder::UseGroup(info), missing, device, num_cols, begin, end,
sketch_container);
}
}
} // namespace common } // namespace common
} // namespace xgboost } // namespace xgboost

View File

@ -129,6 +129,7 @@ class CutsBuilder {
using WQSketch = common::WQuantileSketch<bst_float, bst_float>; using WQSketch = common::WQuantileSketch<bst_float, bst_float>;
/* \brief return whether group for ranking is used. */ /* \brief return whether group for ranking is used. */
static bool UseGroup(DMatrix* dmat); static bool UseGroup(DMatrix* dmat);
static bool UseGroup(MetaInfo const& info);
protected: protected:
HistogramCuts* p_cuts_; HistogramCuts* p_cuts_;

View File

@ -52,6 +52,9 @@ class CudfAdapterBatch : public detail::NoMetaInfo {
return {row_idx, column_idx, value}; return {row_idx, column_idx, value};
} }
XGBOOST_DEVICE bst_row_t NumRows() const { return num_rows_; }
XGBOOST_DEVICE bst_row_t NumCols() const { return columns_.size(); }
private: private:
common::Span<ArrayInterface> columns_; common::Span<ArrayInterface> columns_;
size_t num_rows_; size_t num_rows_;
@ -167,6 +170,9 @@ class CupyAdapterBatch : public detail::NoMetaInfo {
return {row_idx, column_idx, value}; return {row_idx, column_idx, value};
} }
XGBOOST_DEVICE bst_row_t NumRows() const { return array_interface_.num_rows; }
XGBOOST_DEVICE bst_row_t NumCols() const { return array_interface_.num_cols; }
private: private:
ArrayInterface array_interface_; ArrayInterface array_interface_;
}; };

View File

@ -50,8 +50,7 @@ TEST(HistUtil, DeviceSketch) {
// Duplicate this function from hist_util.cu so we don't have to expose it in // Duplicate this function from hist_util.cu so we don't have to expose it in
// header // header
size_t RequiredSampleCutsTest(int max_bins, size_t num_rows) { size_t RequiredSampleCutsTest(int max_bins, size_t num_rows) {
constexpr int kFactor = 8; double eps = 1.0 / (SketchContainer::kFactor * max_bins);
double eps = 1.0 / (kFactor * max_bins);
size_t dummy_nlevel; size_t dummy_nlevel;
size_t num_cuts; size_t num_cuts;
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel( WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
@ -59,6 +58,15 @@ size_t RequiredSampleCutsTest(int max_bins, size_t num_rows) {
return std::min(num_cuts, num_rows); return std::min(num_cuts, num_rows);
} }
size_t BytesRequiredForTest(size_t num_rows, size_t num_columns, size_t num_bins,
bool with_weights) {
size_t bytes_num_elements = BytesPerElement(with_weights) * num_rows * num_columns;
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
// divide by 2 is because the memory quota used in sorting is reused for storing cuts.
return bytes_num_elements / 2 + bytes_cuts;
}
TEST(HistUtil, DeviceSketchMemory) { TEST(HistUtil, DeviceSketchMemory) {
int num_columns = 100; int num_columns = 100;
int num_rows = 1000; int num_rows = 1000;
@ -71,12 +79,10 @@ TEST(HistUtil, DeviceSketchMemory) {
auto device_cuts = DeviceSketch(0, dmat.get(), num_bins); auto device_cuts = DeviceSketch(0, dmat.get(), num_bins);
ConsoleLogger::Configure({{"verbosity", "0"}}); ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements = num_rows * num_columns*sizeof(Entry); size_t bytes_required = BytesRequiredForTest(num_rows, num_columns, num_bins, false);
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
size_t bytes_constant = 1000; size_t bytes_constant = 1000;
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required + bytes_constant);
bytes_num_elements + bytes_cuts + bytes_constant); EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
} }
TEST(HistUtil, DeviceSketchMemoryWeights) { TEST(HistUtil, DeviceSketchMemoryWeights) {
@ -92,12 +98,9 @@ TEST(HistUtil, DeviceSketchMemoryWeights) {
auto device_cuts = DeviceSketch(0, dmat.get(), num_bins); auto device_cuts = DeviceSketch(0, dmat.get(), num_bins);
ConsoleLogger::Configure({{"verbosity", "0"}}); ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements = size_t bytes_required = BytesRequiredForTest(num_rows, num_columns, num_bins, true);
num_rows * num_columns * (sizeof(Entry) + sizeof(float)); EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required * 1.05);
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns * EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
sizeof(DenseCuts::WQSketch::Entry);
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(),
size_t((bytes_num_elements + bytes_cuts) * 1.05));
} }
TEST(HistUtil, DeviceSketchDeterminism) { TEST(HistUtil, DeviceSketchDeterminism) {
@ -192,6 +195,20 @@ TEST(HistUtil, DeviceSketchBatches) {
auto cuts = DeviceSketch(0, dmat.get(), num_bins, batch_size); auto cuts = DeviceSketch(0, dmat.get(), num_bins, batch_size);
ValidateCuts(cuts, dmat.get(), num_bins); ValidateCuts(cuts, dmat.get(), num_bins);
} }
num_rows = 1000;
size_t batches = 16;
auto x = GenerateRandom(num_rows * batches, num_columns);
auto dmat = GetDMatrixFromData(x, num_rows * batches, num_columns);
auto cuts_with_batches = DeviceSketch(0, dmat.get(), num_bins, num_rows);
auto cuts = DeviceSketch(0, dmat.get(), num_bins, 0);
auto const& cut_values_batched = cuts_with_batches.Values();
auto const& cut_values = cuts.Values();
CHECK_EQ(cut_values.size(), cut_values_batched.size());
for (size_t i = 0; i < cut_values.size(); ++i) {
ASSERT_NEAR(cut_values_batched[i], cut_values[i], 1e5);
}
} }
TEST(HistUtil, DeviceSketchMultipleColumnsExternal) { TEST(HistUtil, DeviceSketchMultipleColumnsExternal) {
@ -210,6 +227,19 @@ TEST(HistUtil, DeviceSketchMultipleColumnsExternal) {
} }
} }
template <typename Adapter>
void ValidateBatchedCuts(Adapter adapter, int num_bins, int num_columns, int num_rows,
DMatrix* dmat) {
common::HistogramCuts batched_cuts;
SketchContainer sketch_container(num_bins, num_columns, num_rows);
AdapterDeviceSketch(adapter.Value(), num_bins, std::numeric_limits<float>::quiet_NaN(),
0, &sketch_container);
common::DenseCuts dense_cuts(&batched_cuts);
dense_cuts.Init(&sketch_container.sketches_, num_bins, num_rows);
ValidateCuts(batched_cuts, dmat, num_bins);
}
TEST(HistUtil, AdapterDeviceSketch) { TEST(HistUtil, AdapterDeviceSketch) {
int rows = 5; int rows = 5;
int cols = 1; int cols = 1;
@ -244,14 +274,56 @@ TEST(HistUtil, AdapterDeviceSketchMemory) {
auto cuts = AdapterDeviceSketch(&adapter, num_bins, auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN()); std::numeric_limits<float>::quiet_NaN());
ConsoleLogger::Configure({{"verbosity", "0"}}); ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_num_elements = num_rows * num_columns * sizeof(Entry);
size_t bytes_num_columns = (num_columns + 1) * sizeof(size_t);
size_t bytes_cuts = RequiredSampleCutsTest(num_bins, num_rows) * num_columns *
sizeof(DenseCuts::WQSketch::Entry);
size_t bytes_constant = 1000; size_t bytes_constant = 1000;
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), size_t bytes_required = BytesRequiredForTest(num_rows, num_columns, num_bins, false);
bytes_num_elements + bytes_cuts + bytes_num_columns + bytes_constant); EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required + bytes_constant);
EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
}
TEST(HistUtil, AdapterSketchBatchMemory) {
int num_columns = 100;
int num_rows = 1000;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto x_device = thrust::device_vector<float>(x);
auto adapter = AdapterFromData(x_device, num_rows, num_columns);
dh::GlobalMemoryLogger().Clear();
ConsoleLogger::Configure({{"verbosity", "3"}});
common::HistogramCuts batched_cuts;
SketchContainer sketch_container(num_bins, num_columns, num_rows);
AdapterDeviceSketch(adapter.Value(), num_bins, std::numeric_limits<float>::quiet_NaN(),
0, &sketch_container);
ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_constant = 1000;
size_t bytes_required = BytesRequiredForTest(num_rows, num_columns, num_bins, false);
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required + bytes_constant);
EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
}
TEST(HistUtil, AdapterSketchBatchWeightedMemory) {
int num_columns = 100;
int num_rows = 1000;
int num_bins = 256;
auto x = GenerateRandom(num_rows, num_columns);
auto x_device = thrust::device_vector<float>(x);
auto adapter = AdapterFromData(x_device, num_rows, num_columns);
MetaInfo info;
auto& h_weights = info.weights_.HostVector();
h_weights.resize(num_rows);
std::fill(h_weights.begin(), h_weights.end(), 1.0f);
dh::GlobalMemoryLogger().Clear();
ConsoleLogger::Configure({{"verbosity", "3"}});
common::HistogramCuts batched_cuts;
SketchContainer sketch_container(num_bins, num_columns, num_rows);
AdapterDeviceSketchWeighted(adapter.Value(), num_bins, info,
std::numeric_limits<float>::quiet_NaN(), 0,
&sketch_container);
ConsoleLogger::Configure({{"verbosity", "0"}});
size_t bytes_required = BytesRequiredForTest(num_rows, num_columns, num_bins, true);
EXPECT_LE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required * 1.05);
EXPECT_GE(dh::GlobalMemoryLogger().PeakMemory(), bytes_required);
} }
TEST(HistUtil, AdapterDeviceSketchCategorical) { TEST(HistUtil, AdapterDeviceSketchCategorical) {
@ -284,6 +356,7 @@ TEST(HistUtil, AdapterDeviceSketchMultipleColumns) {
auto cuts = AdapterDeviceSketch(&adapter, num_bins, auto cuts = AdapterDeviceSketch(&adapter, num_bins,
std::numeric_limits<float>::quiet_NaN()); std::numeric_limits<float>::quiet_NaN());
ValidateCuts(cuts, dmat.get(), num_bins); ValidateCuts(cuts, dmat.get(), num_bins);
ValidateBatchedCuts(adapter, num_bins, num_columns, num_rows, dmat.get());
} }
} }
} }
@ -302,6 +375,7 @@ TEST(HistUtil, AdapterDeviceSketchBatches) {
std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN(),
batch_size); batch_size);
ValidateCuts(cuts, dmat.get(), num_bins); ValidateCuts(cuts, dmat.get(), num_bins);
ValidateBatchedCuts(adapter, num_bins, num_columns, num_rows, dmat.get());
} }
} }
@ -323,6 +397,8 @@ TEST(HistUtil, SketchingEquivalent) {
EXPECT_EQ(dmat_cuts.Values(), adapter_cuts.Values()); EXPECT_EQ(dmat_cuts.Values(), adapter_cuts.Values());
EXPECT_EQ(dmat_cuts.Ptrs(), adapter_cuts.Ptrs()); EXPECT_EQ(dmat_cuts.Ptrs(), adapter_cuts.Ptrs());
EXPECT_EQ(dmat_cuts.MinValues(), adapter_cuts.MinValues()); EXPECT_EQ(dmat_cuts.MinValues(), adapter_cuts.MinValues());
ValidateBatchedCuts(adapter, num_bins, num_columns, num_rows, dmat.get());
} }
} }
} }
@ -330,7 +406,7 @@ TEST(HistUtil, SketchingEquivalent) {
TEST(HistUtil, DeviceSketchFromGroupWeights) { TEST(HistUtil, DeviceSketchFromGroupWeights) {
size_t constexpr kRows = 3000, kCols = 200, kBins = 256; size_t constexpr kRows = 3000, kCols = 200, kBins = 256;
size_t constexpr kGroups = 10; size_t constexpr kGroups = 10;
auto m = RandomDataGenerator {kRows, kCols, 0}.GenerateDMatrix(); auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
auto& h_weights = m->Info().weights_.HostVector(); auto& h_weights = m->Info().weights_.HostVector();
h_weights.resize(kRows); h_weights.resize(kRows);
std::fill(h_weights.begin(), h_weights.end(), 1.0f); std::fill(h_weights.begin(), h_weights.end(), 1.0f);
@ -357,6 +433,71 @@ TEST(HistUtil, DeviceSketchFromGroupWeights) {
for (size_t i = 0; i < cuts.Ptrs().size(); ++i) { for (size_t i = 0; i < cuts.Ptrs().size(); ++i) {
ASSERT_EQ(cuts.Ptrs().at(i), weighted_cuts.Ptrs().at(i)); ASSERT_EQ(cuts.Ptrs().at(i), weighted_cuts.Ptrs().at(i));
} }
ValidateCuts(weighted_cuts, m.get(), kBins);
}
void TestAdapterSketchFromWeights(bool with_group) {
size_t constexpr kRows = 300, kCols = 20, kBins = 256;
size_t constexpr kGroups = 10;
HostDeviceVector<float> storage;
std::string m =
RandomDataGenerator{kRows, kCols, 0}.Device(0).GenerateArrayInterface(
&storage);
MetaInfo info;
auto& h_weights = info.weights_.HostVector();
h_weights.resize(kRows);
std::fill(h_weights.begin(), h_weights.end(), 1.0f);
std::vector<bst_group_t> groups(kGroups);
if (with_group) {
for (size_t i = 0; i < kGroups; ++i) {
groups[i] = kRows / kGroups;
}
info.SetInfo("group", groups.data(), DataType::kUInt32, kGroups);
}
info.weights_.SetDevice(0);
info.num_row_ = kRows;
info.num_col_ = kCols;
data::CupyAdapter adapter(m);
auto const& batch = adapter.Value();
SketchContainer sketch_container(kBins, kCols, kRows);
AdapterDeviceSketchWeighted(adapter.Value(), kBins, info, std::numeric_limits<float>::quiet_NaN(),
0,
&sketch_container);
common::HistogramCuts cuts;
common::DenseCuts dense_cuts(&cuts);
dense_cuts.Init(&sketch_container.sketches_, kBins, kRows);
auto dmat = GetDMatrixFromData(storage.HostVector(), kRows, kCols);
if (with_group) {
dmat->Info().SetInfo("group", groups.data(), DataType::kUInt32, kGroups);
}
dmat->Info().SetInfo("weight", h_weights.data(), DataType::kFloat32, h_weights.size());
dmat->Info().num_col_ = kCols;
dmat->Info().num_row_ = kRows;
ASSERT_EQ(cuts.Ptrs().size(), kCols + 1);
ValidateCuts(cuts, dmat.get(), kBins);
if (with_group) {
HistogramCuts non_weighted = DeviceSketch(0, dmat.get(), kBins, 0);
for (size_t i = 0; i < cuts.Values().size(); ++i) {
EXPECT_EQ(cuts.Values()[i], non_weighted.Values()[i]);
}
for (size_t i = 0; i < cuts.MinValues().size(); ++i) {
ASSERT_EQ(cuts.MinValues()[i], non_weighted.MinValues()[i]);
}
for (size_t i = 0; i < cuts.Ptrs().size(); ++i) {
ASSERT_EQ(cuts.Ptrs().at(i), non_weighted.Ptrs().at(i));
}
}
}
TEST(HistUtil, AdapterSketchFromWeights) {
TestAdapterSketchFromWeights(false);
TestAdapterSketchFromWeights(true);
} }
} // namespace common } // namespace common
} // namespace xgboost } // namespace xgboost

View File

@ -151,7 +151,8 @@ inline void ValidateColumn(const HistogramCuts& cuts, int column_idx,
size_t num_bins) { size_t num_bins) {
// Check the endpoints are correct // Check the endpoints are correct
EXPECT_LT(cuts.MinValues()[column_idx], sorted_column.front()); CHECK_GT(sorted_column.size(), 0);
EXPECT_LT(cuts.MinValues().at(column_idx), sorted_column.front());
EXPECT_GT(cuts.Values()[cuts.Ptrs()[column_idx]], sorted_column.front()); EXPECT_GT(cuts.Values()[cuts.Ptrs()[column_idx]], sorted_column.front());
EXPECT_GE(cuts.Values()[cuts.Ptrs()[column_idx+1]-1], sorted_column.back()); EXPECT_GE(cuts.Values()[cuts.Ptrs()[column_idx+1]-1], sorted_column.back());
@ -189,6 +190,7 @@ inline void ValidateCuts(const HistogramCuts& cuts, DMatrix* dmat,
// Collect data into columns // Collect data into columns
std::vector<std::vector<float>> columns(dmat->Info().num_col_); std::vector<std::vector<float>> columns(dmat->Info().num_col_);
for (auto& batch : dmat->GetBatches<SparsePage>()) { for (auto& batch : dmat->GetBatches<SparsePage>()) {
CHECK_GT(batch.Size(), 0);
for (auto i = 0ull; i < batch.Size(); i++) { for (auto i = 0ull; i < batch.Size(); i++) {
for (auto e : batch[i]) { for (auto e : batch[i]) {
columns[e.index].push_back(e.fvalue); columns[e.index].push_back(e.fvalue);