xgboost/src/common/hist_util.h
Jiaming Yuan 3028fa6b42
Implement weighted sketching for adapter. (#5760)
* Bounded memory tests.
* Fixed memory estimation.
2020-06-12 06:20:39 +08:00

709 lines
22 KiB
C++

/*!
* Copyright 2017-2020 by Contributors
* \file hist_util.h
* \brief Utility for fast histogram aggregation
* \author Philip Cho, Tianqi Chen
*/
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
#define XGBOOST_COMMON_HIST_UTIL_H_
#include <xgboost/data.h>
#include <xgboost/generic_parameters.h>
#include <limits>
#include <vector>
#include <algorithm>
#include <memory>
#include <utility>
#include <map>
#include "row_set.h"
#include "threading_utils.h"
#include "../tree/param.h"
#include "./quantile.h"
#include "./timer.h"
#include "../include/rabit/rabit.h"
namespace xgboost {
namespace common {
/*!
* \brief A single row in global histogram index.
* Directly represent the global index in the histogram entry.
*/
using GHistIndexRow = Span<uint32_t const>;
// A CSC matrix representing histogram cuts, used in CPU quantile hist.
// The cut values represent upper bounds of bins containing approximately equal numbers of elements
class HistogramCuts {
// Using friends to avoid creating a virtual class, since HistogramCuts is used as value
// object in many places.
friend class SparseCuts;
friend class DenseCuts;
friend class CutsBuilder;
protected:
using BinIdx = uint32_t;
common::Monitor monitor_;
public:
HostDeviceVector<bst_float> cut_values_; // NOLINT
HostDeviceVector<uint32_t> cut_ptrs_; // NOLINT
// storing minimum value in a sketch set.
HostDeviceVector<float> min_vals_; // NOLINT
HistogramCuts();
HistogramCuts(HistogramCuts const& that) {
cut_values_.Resize(that.cut_values_.Size());
cut_ptrs_.Resize(that.cut_ptrs_.Size());
min_vals_.Resize(that.min_vals_.Size());
cut_values_.Copy(that.cut_values_);
cut_ptrs_.Copy(that.cut_ptrs_);
min_vals_.Copy(that.min_vals_);
}
HistogramCuts(HistogramCuts&& that) noexcept(true) {
*this = std::forward<HistogramCuts&&>(that);
}
HistogramCuts& operator=(HistogramCuts const& that) {
cut_values_.Resize(that.cut_values_.Size());
cut_ptrs_.Resize(that.cut_ptrs_.Size());
min_vals_.Resize(that.min_vals_.Size());
cut_values_.Copy(that.cut_values_);
cut_ptrs_.Copy(that.cut_ptrs_);
min_vals_.Copy(that.min_vals_);
return *this;
}
HistogramCuts& operator=(HistogramCuts&& that) noexcept(true) {
monitor_ = std::move(that.monitor_);
cut_ptrs_ = std::move(that.cut_ptrs_);
cut_values_ = std::move(that.cut_values_);
min_vals_ = std::move(that.min_vals_);
return *this;
}
/* \brief Build histogram cuts. */
void Build(DMatrix* dmat, uint32_t const max_num_bins);
/* \brief How many bins a feature has. */
uint32_t FeatureBins(uint32_t feature) const {
return cut_ptrs_.ConstHostVector().at(feature + 1) -
cut_ptrs_.ConstHostVector()[feature];
}
// Getters. Cuts should be of no use after building histogram indices, but currently
// it's deeply linked with quantile_hist, gpu sketcher and gpu_hist. So we preserve
// these for now.
std::vector<uint32_t> const& Ptrs() const { return cut_ptrs_.ConstHostVector(); }
std::vector<float> const& Values() const { return cut_values_.ConstHostVector(); }
std::vector<float> const& MinValues() const { return min_vals_.ConstHostVector(); }
size_t TotalBins() const { return cut_ptrs_.ConstHostVector().back(); }
// Return the index of a cut point that is strictly greater than the input
// value, or the last available index if none exists
BinIdx SearchBin(float value, uint32_t column_id) const {
auto beg = cut_ptrs_.ConstHostVector().at(column_id);
auto end = cut_ptrs_.ConstHostVector().at(column_id + 1);
const auto &values = cut_values_.ConstHostVector();
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
BinIdx idx = it - values.cbegin();
if (idx == end) {
idx -= 1;
}
return idx;
}
BinIdx SearchBin(Entry const& e) const {
return SearchBin(e.fvalue, e.index);
}
};
/* \brief An interface for building quantile cuts.
*
* `DenseCuts' always assumes there are `max_bins` for each feature, which makes it not
* suitable for sparse dataset. On the other hand `SparseCuts' uses `GetColumnBatches',
* which doubles the memory usage, hence can not be applied to dense dataset.
*/
class CutsBuilder {
public:
using WQSketch = common::WQuantileSketch<bst_float, bst_float>;
/* \brief return whether group for ranking is used. */
static bool UseGroup(DMatrix* dmat);
static bool UseGroup(MetaInfo const& info);
protected:
HistogramCuts* p_cuts_;
public:
explicit CutsBuilder(HistogramCuts* p_cuts) : p_cuts_{p_cuts} {}
virtual ~CutsBuilder() = default;
static uint32_t SearchGroupIndFromRow(
std::vector<bst_uint> const& group_ptr, size_t const base_rowid) {
using KIt = std::vector<bst_uint>::const_iterator;
KIt res = std::lower_bound(group_ptr.cbegin(), group_ptr.cend() - 1, base_rowid);
// Cannot use CHECK_NE because it will try to print the iterator.
bool const found = res != group_ptr.cend() - 1;
if (!found) {
LOG(FATAL) << "Row " << base_rowid << " does not lie in any group!";
}
uint32_t group_ind = std::distance(group_ptr.cbegin(), res);
return group_ind;
}
void AddCutPoint(WQSketch::SummaryContainer const& summary, int max_bin) {
size_t required_cuts = std::min(summary.size, static_cast<size_t>(max_bin));
for (size_t i = 1; i < required_cuts; ++i) {
bst_float cpt = summary.data[i].value;
if (i == 1 || cpt > p_cuts_->cut_values_.ConstHostVector().back()) {
p_cuts_->cut_values_.HostVector().push_back(cpt);
}
}
}
/* \brief Build histogram indices. */
virtual void Build(DMatrix* dmat, uint32_t const max_num_bins) = 0;
};
/*! \brief Cut configuration for sparse dataset. */
class SparseCuts : public CutsBuilder {
/* \brief Distrbute columns to each thread according to number of entries. */
static std::vector<size_t> LoadBalance(SparsePage const& page, size_t const nthreads);
Monitor monitor_;
public:
explicit SparseCuts(HistogramCuts* container) :
CutsBuilder(container) {
monitor_.Init(__FUNCTION__);
}
/* \brief Concatonate the built cuts in each thread. */
void Concat(std::vector<std::unique_ptr<SparseCuts>> const& cuts, uint32_t n_cols);
/* \brief Build histogram indices in single thread. */
void SingleThreadBuild(SparsePage const& page, MetaInfo const& info,
uint32_t max_num_bins,
bool const use_group_ind,
uint32_t beg, uint32_t end, uint32_t thread_id);
void Build(DMatrix* dmat, uint32_t const max_num_bins) override;
};
/*! \brief Cut configuration for dense dataset. */
class DenseCuts : public CutsBuilder {
protected:
Monitor monitor_;
public:
explicit DenseCuts(HistogramCuts* container) :
CutsBuilder(container) {
monitor_.Init(__FUNCTION__);
}
void Init(std::vector<WQSketch>* sketchs, uint32_t max_num_bins, size_t max_rows);
void Build(DMatrix* p_fmat, uint32_t max_num_bins) override;
};
enum BinTypeSize {
kUint8BinsTypeSize = 1,
kUint16BinsTypeSize = 2,
kUint32BinsTypeSize = 4
};
struct Index {
Index() {
SetBinTypeSize(binTypeSize_);
}
Index(const Index& i) = delete;
Index& operator=(Index i) = delete;
Index(Index&& i) = delete;
Index& operator=(Index&& i) = delete;
uint32_t operator[](size_t i) const {
if (offset_ptr_ != nullptr) {
return func_(data_ptr_, i) + offset_ptr_[i%p_];
} else {
return func_(data_ptr_, i);
}
}
void SetBinTypeSize(BinTypeSize binTypeSize) {
binTypeSize_ = binTypeSize;
switch (binTypeSize) {
case kUint8BinsTypeSize:
func_ = &GetValueFromUint8;
break;
case kUint16BinsTypeSize:
func_ = &GetValueFromUint16;
break;
case kUint32BinsTypeSize:
func_ = &GetValueFromUint32;
break;
default:
CHECK(binTypeSize == kUint8BinsTypeSize ||
binTypeSize == kUint16BinsTypeSize ||
binTypeSize == kUint32BinsTypeSize);
}
}
BinTypeSize GetBinTypeSize() const {
return binTypeSize_;
}
template<typename T>
T* data() const { // NOLINT
return static_cast<T*>(data_ptr_);
}
uint32_t* Offset() const {
return offset_ptr_;
}
size_t OffsetSize() const {
return offset_.size();
}
size_t Size() const {
return data_.size() / (binTypeSize_);
}
void Resize(const size_t nBytesData) {
data_.resize(nBytesData);
data_ptr_ = reinterpret_cast<void*>(data_.data());
}
void ResizeOffset(const size_t nDisps) {
offset_.resize(nDisps);
offset_ptr_ = offset_.data();
p_ = nDisps;
}
std::vector<uint8_t>::const_iterator begin() const { // NOLINT
return data_.begin();
}
std::vector<uint8_t>::const_iterator end() const { // NOLINT
return data_.end();
}
private:
static uint32_t GetValueFromUint8(void *t, size_t i) {
return reinterpret_cast<uint8_t*>(t)[i];
}
static uint32_t GetValueFromUint16(void* t, size_t i) {
return reinterpret_cast<uint16_t*>(t)[i];
}
static uint32_t GetValueFromUint32(void* t, size_t i) {
return reinterpret_cast<uint32_t*>(t)[i];
}
using Func = uint32_t (*)(void*, size_t);
std::vector<uint8_t> data_;
std::vector<uint32_t> offset_; // size of this field is equal to number of features
void* data_ptr_;
BinTypeSize binTypeSize_ {kUint8BinsTypeSize};
size_t p_ {1};
uint32_t* offset_ptr_ {nullptr};
Func func_;
};
/*!
* \brief preprocessed global index matrix, in CSR format
*
* Transform floating values to integer index in histogram This is a global histogram
* index for CPU histogram. On GPU ellpack page is used.
*/
struct GHistIndexMatrix {
/*! \brief row pointer to rows by element position */
std::vector<size_t> row_ptr;
/*! \brief The index data */
Index index;
/*! \brief hit count of each index */
std::vector<size_t> hit_count;
/*! \brief The corresponding cuts */
HistogramCuts cut;
DMatrix* p_fmat;
size_t max_num_bins;
// Create a global histogram matrix, given cut
void Init(DMatrix* p_fmat, int max_num_bins);
template<typename BinIdxType>
void SetIndexDataForDense(common::Span<BinIdxType> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin, common::Span<const uint32_t> offsets_span,
size_t nbins);
// specific method for sparse data as no posibility to reduce allocated memory
void SetIndexDataForSparse(common::Span<uint32_t> index_data_span,
size_t batch_threads, const SparsePage& batch,
size_t rbegin, size_t nbins);
void ResizeIndex(const size_t rbegin, const SparsePage& batch,
const size_t n_offsets, const size_t n_index,
const bool isDense);
inline void GetFeatureCounts(size_t* counts) const {
auto nfeature = cut.Ptrs().size() - 1;
for (unsigned fid = 0; fid < nfeature; ++fid) {
auto ibegin = cut.Ptrs()[fid];
auto iend = cut.Ptrs()[fid + 1];
for (auto i = ibegin; i < iend; ++i) {
counts[fid] += hit_count[i];
}
}
}
inline bool IsDense() const {
return isDense_;
}
private:
std::vector<size_t> hit_count_tloc_;
bool isDense_;
};
struct GHistIndexBlock {
const size_t* row_ptr;
const uint32_t* index;
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
: row_ptr(row_ptr), index(index) {}
// get i-th row
inline GHistIndexRow operator[](size_t i) const {
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
}
};
class ColumnMatrix;
class GHistIndexBlockMatrix {
public:
void Init(const GHistIndexMatrix& gmat,
const ColumnMatrix& colmat,
const tree::TrainParam& param);
inline GHistIndexBlock operator[](size_t i) const {
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
}
inline size_t GetNumBlock() const {
return blocks_.size();
}
private:
std::vector<size_t> row_ptr_;
std::vector<uint32_t> index_;
const HistogramCuts* cut_;
struct Block {
const size_t* row_ptr_begin;
const size_t* row_ptr_end;
const uint32_t* index_begin;
const uint32_t* index_end;
};
std::vector<Block> blocks_;
};
template<typename GradientSumT>
using GHistRow = Span<xgboost::detail::GradientPairInternal<GradientSumT> >;
/*!
* \brief fill a histogram by zeros
*/
template<typename GradientSumT>
void InitilizeHistByZeroes(GHistRow<GradientSumT> hist, size_t begin, size_t end);
/*!
* \brief Increment hist as dst += add in range [begin, end)
*/
template<typename GradientSumT>
void IncrementHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> add,
size_t begin, size_t end);
/*!
* \brief Copy hist from src to dst in range [begin, end)
*/
template<typename GradientSumT>
void CopyHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src,
size_t begin, size_t end);
/*!
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
*/
template<typename GradientSumT>
void SubtractionHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src1,
const GHistRow<GradientSumT> src2,
size_t begin, size_t end);
/*!
* \brief histogram of gradient statistics for multiple nodes
*/
template<typename GradientSumT>
class HistCollection {
public:
using GHistRowT = GHistRow<GradientSumT>;
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
// access histogram for i-th node
GHistRowT operator[](bst_uint nid) const {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
CHECK_NE(row_ptr_[nid], kMax);
GradientPairT* ptr =
const_cast<GradientPairT*>(dmlc::BeginPtr(data_) + row_ptr_[nid]);
return {ptr, nbins_};
}
// have we computed a histogram for i-th node?
bool RowExists(bst_uint nid) const {
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
}
// initialize histogram collection
void Init(uint32_t nbins) {
if (nbins_ != nbins) {
nbins_ = nbins;
// quite expensive operation, so let's do this only once
data_.clear();
}
row_ptr_.clear();
n_nodes_added_ = 0;
}
// create an empty histogram for i-th node
void AddHistRow(bst_uint nid) {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
if (nid >= row_ptr_.size()) {
row_ptr_.resize(nid + 1, kMax);
}
CHECK_EQ(row_ptr_[nid], kMax);
if (data_.size() < nbins_ * (nid + 1)) {
data_.resize(nbins_ * (nid + 1));
}
row_ptr_[nid] = nbins_ * n_nodes_added_;
n_nodes_added_++;
}
private:
/*! \brief number of all bins over all features */
uint32_t nbins_ = 0;
/*! \brief amount of active nodes in hist collection */
uint32_t n_nodes_added_ = 0;
std::vector<GradientPairT> data_;
/*! \brief row_ptr_[nid] locates bin for histogram of node nid */
std::vector<size_t> row_ptr_;
};
/*!
* \brief Stores temporary histograms to compute them in parallel
* Supports processing multiple tree-nodes for nested parallelism
* Able to reduce histograms across threads in efficient way
*/
template<typename GradientSumT>
class ParallelGHistBuilder {
public:
using GHistRowT = GHistRow<GradientSumT>;
void Init(size_t nbins) {
if (nbins != nbins_) {
hist_buffer_.Init(nbins);
nbins_ = nbins;
}
}
// Add new elements if needed, mark all hists as unused
// targeted_hists - already allocated hists which should contain final results after Reduce() call
void Reset(size_t nthreads, size_t nodes, const BlockedSpace2d& space,
const std::vector<GHistRowT>& targeted_hists) {
hist_buffer_.Init(nbins_);
tid_nid_to_hist_.clear();
hist_memory_.clear();
threads_to_nids_map_.clear();
targeted_hists_ = targeted_hists;
CHECK_EQ(nodes, targeted_hists.size());
nodes_ = nodes;
nthreads_ = nthreads;
MatchThreadsToNodes(space);
AllocateAdditionalHistograms();
MatchNodeNidPairToHist();
hist_was_used_.resize(nthreads * nodes_);
std::fill(hist_was_used_.begin(), hist_was_used_.end(), static_cast<int>(false));
}
// Get specified hist, initialize hist by zeros if it wasn't used before
GHistRowT GetInitializedHist(size_t tid, size_t nid) {
CHECK_LT(nid, nodes_);
CHECK_LT(tid, nthreads_);
size_t idx = tid_nid_to_hist_.at({tid, nid});
GHistRowT hist = hist_memory_[idx];
if (!hist_was_used_[tid * nodes_ + nid]) {
InitilizeHistByZeroes(hist, 0, hist.size());
hist_was_used_[tid * nodes_ + nid] = static_cast<int>(true);
}
return hist;
}
// Reduce following bins (begin, end] for nid-node in dst across threads
void ReduceHist(size_t nid, size_t begin, size_t end) {
CHECK_GT(end, begin);
CHECK_LT(nid, nodes_);
GHistRowT dst = targeted_hists_[nid];
bool is_updated = false;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (hist_was_used_[tid * nodes_ + nid]) {
is_updated = true;
const size_t idx = tid_nid_to_hist_.at({tid, nid});
GHistRowT src = hist_memory_[idx];
if (dst.data() != src.data()) {
IncrementHist(dst, src, begin, end);
}
}
}
if (!is_updated) {
// In distributed mode - some tree nodes can be empty on local machines,
// So we need just set local hist by zeros in this case
InitilizeHistByZeroes(dst, begin, end);
}
}
protected:
void MatchThreadsToNodes(const BlockedSpace2d& space) {
const size_t space_size = space.Size();
const size_t chunck_size = space_size / nthreads_ + !!(space_size % nthreads_);
threads_to_nids_map_.resize(nthreads_ * nodes_, false);
for (size_t tid = 0; tid < nthreads_; ++tid) {
size_t begin = chunck_size * tid;
size_t end = std::min(begin + chunck_size, space_size);
if (begin < space_size) {
size_t nid_begin = space.GetFirstDimension(begin);
size_t nid_end = space.GetFirstDimension(end-1);
for (size_t nid = nid_begin; nid <= nid_end; ++nid) {
// true - means thread 'tid' will work to compute partial hist for node 'nid'
threads_to_nids_map_[tid * nodes_ + nid] = true;
}
}
}
}
void AllocateAdditionalHistograms() {
size_t hist_allocated_additionally = 0;
for (size_t nid = 0; nid < nodes_; ++nid) {
int nthreads_for_nid = 0;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (threads_to_nids_map_[tid * nodes_ + nid]) {
nthreads_for_nid++;
}
}
// In distributed mode - some tree nodes can be empty on local machines,
// set nthreads_for_nid to 0 in this case.
// In another case - allocate additional (nthreads_for_nid - 1) histograms,
// because one is already allocated externally (will store final result for the node).
hist_allocated_additionally += std::max<int>(0, nthreads_for_nid - 1);
}
for (size_t i = 0; i < hist_allocated_additionally; ++i) {
hist_buffer_.AddHistRow(i);
}
}
void MatchNodeNidPairToHist() {
size_t hist_total = 0;
size_t hist_allocated_additionally = 0;
for (size_t nid = 0; nid < nodes_; ++nid) {
bool first_hist = true;
for (size_t tid = 0; tid < nthreads_; ++tid) {
if (threads_to_nids_map_[tid * nodes_ + nid]) {
if (first_hist) {
hist_memory_.push_back(targeted_hists_[nid]);
first_hist = false;
} else {
hist_memory_.push_back(hist_buffer_[hist_allocated_additionally]);
hist_allocated_additionally++;
}
// map pair {tid, nid} to index of allocated histogram from hist_memory_
tid_nid_to_hist_[{tid, nid}] = hist_total++;
CHECK_EQ(hist_total, hist_memory_.size());
}
}
}
}
/*! \brief number of bins in each histogram */
size_t nbins_ = 0;
/*! \brief number of threads for parallel computation */
size_t nthreads_ = 0;
/*! \brief number of nodes which will be processed in parallel */
size_t nodes_ = 0;
/*! \brief Buffer for additional histograms for Parallel processing */
HistCollection<GradientSumT> hist_buffer_;
/*!
* \brief Marks which hists were used, it means that they should be merged.
* Contains only {true or false} values
* but 'int' is used instead of 'bool', because std::vector<bool> isn't thread safe
*/
std::vector<int> hist_was_used_;
/*! \brief Buffer for additional histograms for Parallel processing */
std::vector<bool> threads_to_nids_map_;
/*! \brief Contains histograms for final results */
std::vector<GHistRowT> targeted_hists_;
/*! \brief Allocated memory for histograms used for construction */
std::vector<GHistRowT> hist_memory_;
/*! \brief map pair {tid, nid} to index of allocated histogram from hist_memory_ */
std::map<std::pair<size_t, size_t>, size_t> tid_nid_to_hist_;
};
/*!
* \brief builder for histograms of gradient statistics
*/
template<typename GradientSumT>
class GHistBuilder {
public:
using GHistRowT = GHistRow<GradientSumT>;
GHistBuilder() = default;
GHistBuilder(size_t nthread, uint32_t nbins) : nthread_{nthread}, nbins_{nbins} {}
// construct a histogram via histogram aggregation
void BuildHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat,
GHistRowT hist,
bool isDense);
// same, with feature grouping
void BuildBlockHist(const std::vector<GradientPair>& gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexBlockMatrix& gmatb,
GHistRowT hist);
// construct a histogram via subtraction trick
void SubtractionTrick(GHistRowT self,
GHistRowT sibling,
GHistRowT parent);
uint32_t GetNumBins() const {
return nbins_;
}
private:
/*! \brief number of threads for parallel computation */
size_t nthread_ { 0 };
/*! \brief number of all bins over all features */
uint32_t nbins_ { 0 };
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_HIST_UTIL_H_