Fix dask prediction. (#4941)
* Fix dask prediction. * Add better error messages for wrong partition.
This commit is contained in:
parent
b61d534472
commit
2ebdec8aa6
@ -7,11 +7,10 @@ from dask import array as da
|
||||
|
||||
def main(client):
|
||||
# generate some random data for demonstration
|
||||
n = 100
|
||||
m = 100000
|
||||
partition_size = 1000
|
||||
X = da.random.random((m, n), partition_size)
|
||||
y = da.random.random(m, partition_size)
|
||||
n = 100
|
||||
X = da.random.random(size=(m, n), chunks=100)
|
||||
y = da.random.random(size=(m, ), chunks=100)
|
||||
|
||||
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
|
||||
# DMatrix scatter around workers.
|
||||
@ -38,6 +37,6 @@ def main(client):
|
||||
|
||||
if __name__ == '__main__':
|
||||
# or use other clusters for scaling
|
||||
with LocalCluster(n_workers=4, threads_per_worker=1) as cluster:
|
||||
with LocalCluster(n_workers=7, threads_per_worker=1) as cluster:
|
||||
with Client(cluster) as client:
|
||||
main(client)
|
||||
|
||||
@ -6,11 +6,11 @@ from xgboost.dask import DaskDMatrix
|
||||
|
||||
|
||||
def main(client):
|
||||
n = 100
|
||||
# generate some random data for demonstration
|
||||
m = 100000
|
||||
partition_size = 1000
|
||||
X = da.random.random((m, n), partition_size)
|
||||
y = da.random.random(m, partition_size)
|
||||
n = 100
|
||||
X = da.random.random(size=(m, n), chunks=100)
|
||||
y = da.random.random(size=(m, ), chunks=100)
|
||||
|
||||
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
|
||||
# DMatrix scatter around workers.
|
||||
@ -23,6 +23,7 @@ def main(client):
|
||||
output = xgb.dask.train(client,
|
||||
{'verbosity': 2,
|
||||
'nthread': 1,
|
||||
# Golden line for GPU training
|
||||
'tree_method': 'gpu_hist'},
|
||||
dtrain,
|
||||
num_boost_round=4, evals=[(dtrain, 'train')])
|
||||
|
||||
@ -139,13 +139,14 @@ class DaskDMatrix:
|
||||
self._missing = missing
|
||||
|
||||
if len(data.shape) != 2:
|
||||
_expect('2 dimensions input', data.shape)
|
||||
raise ValueError(
|
||||
'Expecting 2 dimensional input, got: {shape}'.format(
|
||||
shape=data.shape))
|
||||
|
||||
if not any(isinstance(data, t) for t in (dd.DataFrame, da.Array)):
|
||||
if not isinstance(data, (dd.DataFrame, da.Array)):
|
||||
raise TypeError(_expect((dd.DataFrame, da.Array), type(data)))
|
||||
if not any(
|
||||
isinstance(label, t)
|
||||
for t in (dd.DataFrame, da.Array, dd.Series, type(None))):
|
||||
if not isinstance(label, (dd.DataFrame, da.Array, dd.Series,
|
||||
type(None))):
|
||||
raise TypeError(
|
||||
_expect((dd.DataFrame, da.Array, dd.Series), type(label)))
|
||||
|
||||
@ -158,6 +159,23 @@ class DaskDMatrix:
|
||||
|
||||
async def map_local_data(self, client, data, label=None, weights=None):
|
||||
'''Obtain references to local data.'''
|
||||
|
||||
def inconsistent(left, left_name, right, right_name):
|
||||
msg = 'Partitions between {a_name} and {b_name} are not ' \
|
||||
'consistent: {a_len} != {b_len}. ' \
|
||||
'Please try to repartition/rechunk your data.'.format(
|
||||
a_name=left_name, b_name=right_name, a_len=len(left),
|
||||
b_len=len(right)
|
||||
)
|
||||
return msg
|
||||
|
||||
def check_columns(parts):
|
||||
# x is required to be 2 dim in __init__
|
||||
assert parts.ndim == 1 or parts.shape[1], 'Data should be' \
|
||||
' partitioned by row. To avoid this specify the number' \
|
||||
' of columns for your dask Array explicitly. e.g.' \
|
||||
' chunks=(partition_size, X.shape[1])'
|
||||
|
||||
data = data.persist()
|
||||
if label is not None:
|
||||
label = label.persist()
|
||||
@ -169,28 +187,28 @@ class DaskDMatrix:
|
||||
# equivalents.
|
||||
X_parts = data.to_delayed()
|
||||
if isinstance(X_parts, numpy.ndarray):
|
||||
assert X_parts.shape[1] == 1
|
||||
check_columns(X_parts)
|
||||
X_parts = X_parts.flatten().tolist()
|
||||
|
||||
if label is not None:
|
||||
y_parts = label.to_delayed()
|
||||
if isinstance(y_parts, numpy.ndarray):
|
||||
assert y_parts.ndim == 1 or y_parts.shape[1] == 1
|
||||
check_columns(y_parts)
|
||||
y_parts = y_parts.flatten().tolist()
|
||||
if weights is not None:
|
||||
w_parts = weights.to_delayed()
|
||||
if isinstance(w_parts, numpy.ndarray):
|
||||
assert w_parts.ndim == 1 or w_parts.shape[1] == 1
|
||||
check_columns(w_parts)
|
||||
w_parts = w_parts.flatten().tolist()
|
||||
|
||||
parts = [X_parts]
|
||||
if label is not None:
|
||||
assert len(X_parts) == len(
|
||||
y_parts), 'Partitions between X and y are not consistent'
|
||||
y_parts), inconsistent(X_parts, 'X', y_parts, 'labels')
|
||||
parts.append(y_parts)
|
||||
if weights is not None:
|
||||
assert len(X_parts) == len(
|
||||
w_parts), 'Partitions between X and weight are not consistent.'
|
||||
w_parts), inconsistent(X_parts, 'X', w_parts, 'weights')
|
||||
parts.append(w_parts)
|
||||
parts = list(map(delayed, zip(*parts)))
|
||||
|
||||
@ -275,7 +293,11 @@ class DaskDMatrix:
|
||||
cols = 0
|
||||
for shape in shapes:
|
||||
rows += shape[0]
|
||||
cols += shape[1]
|
||||
|
||||
c = shape[1]
|
||||
assert cols in (0, c), 'Shape between partitions are not the' \
|
||||
' same. Got: {left} and {right}'.format(left=c, right=cols)
|
||||
cols = c
|
||||
return (rows, cols)
|
||||
|
||||
|
||||
|
||||
@ -185,7 +185,7 @@ void SimpleCSRSource::CopyFrom(std::string const& cuda_interfaces_str,
|
||||
cuda_interfaces_str.size()});
|
||||
std::vector<Json> const& columns = get<Array>(interfaces);
|
||||
size_t n_columns = columns.size();
|
||||
CHECK_GT(n_columns, 0) << "Number of columns must not be greater than 0.";
|
||||
CHECK_GT(n_columns, 0) << "Number of columns must not eqaul to 0.";
|
||||
|
||||
auto const& typestr = get<String const>(columns[0]["typestr"]);
|
||||
CHECK_EQ(typestr.size(), 3) << ColumnarErrors::TypestrFormat();
|
||||
|
||||
@ -21,12 +21,12 @@ except ImportError:
|
||||
pass
|
||||
|
||||
kRows = 1000
|
||||
kCols = 10
|
||||
|
||||
|
||||
def generate_array():
|
||||
n = 10
|
||||
partition_size = 20
|
||||
X = da.random.random((kRows, n), partition_size)
|
||||
X = da.random.random((kRows, kCols), partition_size)
|
||||
y = da.random.random(kRows, partition_size)
|
||||
return X, y
|
||||
|
||||
@ -44,7 +44,7 @@ def test_from_dask_dataframe(client):
|
||||
prediction = xgb.dask.predict(client, model=booster, data=dtrain)
|
||||
|
||||
assert isinstance(prediction, da.Array)
|
||||
assert prediction.shape[0] == kRows, prediction
|
||||
assert prediction.shape[0] == kRows and prediction.shape[1] == kCols
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
# evals_result is not supported in dask interface.
|
||||
@ -59,6 +59,7 @@ def test_from_dask_array(client):
|
||||
result = xgb.dask.train(client, {}, dtrain)
|
||||
|
||||
prediction = xgb.dask.predict(client, result, dtrain)
|
||||
assert prediction.shape[0] == kRows and prediction.shape[1] == kCols
|
||||
|
||||
assert isinstance(prediction, da.Array)
|
||||
|
||||
@ -71,6 +72,8 @@ def test_regressor(client):
|
||||
regressor.fit(X, y, eval_set=[(X, y)])
|
||||
prediction = regressor.predict(X)
|
||||
|
||||
assert prediction.shape[0] == kRows and prediction.shape[1] == kCols
|
||||
|
||||
history = regressor.evals_result()
|
||||
|
||||
assert isinstance(prediction, da.Array)
|
||||
@ -88,6 +91,8 @@ def test_classifier(client):
|
||||
classifier.fit(X, y, eval_set=[(X, y)])
|
||||
prediction = classifier.predict(X)
|
||||
|
||||
assert prediction.shape[0] == kRows and prediction.shape[1] == kCols
|
||||
|
||||
history = classifier.evals_result()
|
||||
|
||||
assert isinstance(prediction, da.Array)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user