xgboost/src/data/simple_csr_source.cc
Jiaming Yuan 2ebdec8aa6
Fix dask prediction. (#4941)
* Fix dask prediction.

* Add better error messages for wrong partition.
2019-10-14 23:19:34 -04:00

206 lines
6.4 KiB
C++

/*!
* Copyright 2015-2019 by Contributors
* \file simple_csr_source.cc
*/
#include <dmlc/base.h>
#include <xgboost/logging.h>
#include <xgboost/json.h>
#include <limits>
#include "simple_csr_source.h"
#include "columnar.h"
namespace xgboost {
namespace data {
void SimpleCSRSource::Clear() {
page_.Clear();
this->info.Clear();
}
void SimpleCSRSource::CopyFrom(DMatrix* src) {
this->Clear();
this->info = src->Info();
for (const auto &batch : src->GetBatches<SparsePage>()) {
page_.Push(batch);
}
}
void SimpleCSRSource::CopyFrom(dmlc::Parser<uint32_t>* parser) {
// use qid to get group info
const uint64_t default_max = std::numeric_limits<uint64_t>::max();
uint64_t last_group_id = default_max;
bst_uint group_size = 0;
std::vector<uint64_t> qids;
this->Clear();
while (parser->Next()) {
const dmlc::RowBlock<uint32_t>& batch = parser->Value();
if (batch.label != nullptr) {
auto& labels = info.labels_.HostVector();
labels.insert(labels.end(), batch.label, batch.label + batch.size);
}
if (batch.weight != nullptr) {
auto& weights = info.weights_.HostVector();
weights.insert(weights.end(), batch.weight, batch.weight + batch.size);
}
if (batch.qid != nullptr) {
qids.insert(qids.end(), batch.qid, batch.qid + batch.size);
// get group
for (size_t i = 0; i < batch.size; ++i) {
const uint64_t cur_group_id = batch.qid[i];
if (last_group_id == default_max || last_group_id != cur_group_id) {
info.group_ptr_.push_back(group_size);
}
last_group_id = cur_group_id;
++group_size;
}
}
// Remove the assertion on batch.index, which can be null in the case that the data in this
// batch is entirely sparse. Although it's true that this indicates a likely issue with the
// user's data workflows, passing XGBoost entirely sparse data should not cause it to fail.
// See https://github.com/dmlc/xgboost/issues/1827 for complete detail.
// CHECK(batch.index != nullptr);
// update information
this->info.num_row_ += batch.size;
// copy the data over
auto& data_vec = page_.data.HostVector();
auto& offset_vec = page_.offset.HostVector();
for (size_t i = batch.offset[0]; i < batch.offset[batch.size]; ++i) {
uint32_t index = batch.index[i];
bst_float fvalue = batch.value == nullptr ? 1.0f : batch.value[i];
data_vec.emplace_back(index, fvalue);
this->info.num_col_ = std::max(this->info.num_col_,
static_cast<uint64_t>(index + 1));
}
size_t top = page_.offset.Size();
for (size_t i = 0; i < batch.size; ++i) {
offset_vec.push_back(offset_vec[top - 1] + batch.offset[i + 1] - batch.offset[0]);
}
}
if (last_group_id != default_max) {
if (group_size > info.group_ptr_.back()) {
info.group_ptr_.push_back(group_size);
}
}
this->info.num_nonzero_ = static_cast<uint64_t>(page_.data.Size());
// Either every row has query ID or none at all
CHECK(qids.empty() || qids.size() == info.num_row_);
}
void SimpleCSRSource::LoadBinary(dmlc::Stream* fi) {
int tmagic;
CHECK(fi->Read(&tmagic, sizeof(tmagic)) == sizeof(tmagic)) << "invalid input file format";
CHECK_EQ(tmagic, kMagic) << "invalid format, magic number mismatch";
info.LoadBinary(fi);
fi->Read(&page_.offset.HostVector());
fi->Read(&page_.data.HostVector());
}
void SimpleCSRSource::SaveBinary(dmlc::Stream* fo) const {
int tmagic = kMagic;
fo->Write(&tmagic, sizeof(tmagic));
info.SaveBinary(fo);
fo->Write(page_.offset.HostVector());
fo->Write(page_.data.HostVector());
}
void SimpleCSRSource::BeforeFirst() {
at_first_ = true;
}
bool SimpleCSRSource::Next() {
if (!at_first_) return false;
at_first_ = false;
return true;
}
const SparsePage& SimpleCSRSource::Value() const {
return page_;
}
/*!
* Please be careful that, in official specification, the only three required fields are
* `shape', `version' and `typestr'. Any other is optional, including `data'. But here
* we have one additional requirements for input data:
*
* - `data' field is required, passing in an empty dataset is not accepted, as most (if
* not all) of our algorithms don't have test for empty dataset. An error is better
* than a crash.
*
* Missing value handling:
* Missing value is specified:
* - Ignore the validity mask from columnar format.
* - Remove entries that equals to missing value.
* - missing = NaN:
* - Remove entries that is NaN
* - missing != NaN:
* - Check for NaN entries, throw an error if found.
* Missing value is not specified:
* - Remove entries that is specifed as by validity mask.
* - Remove NaN entries.
*
* What if invalid value from dataframe is 0 but I specify missing=NaN in XGBoost? Since
* validity mask is ignored, all 0s are preserved in XGBoost.
*
* FIXME(trivialfis): Put above into document after we have a consistent way for
* processing input data.
*
* Sample input:
* [
* {
* "shape": [
* 10
* ],
* "strides": [
* 4
* ],
* "data": [
* 30074864128,
* false
* ],
* "typestr": "<f4",
* "version": 1,
* "mask": {
* "shape": [
* 64
* ],
* "strides": [
* 1
* ],
* "data": [
* 30074864640,
* false
* ],
* "typestr": "|i1",
* "version": 1
* }
* }
* ]
*/
void SimpleCSRSource::CopyFrom(std::string const& cuda_interfaces_str,
bool has_missing, float missing) {
Json interfaces = Json::Load({cuda_interfaces_str.c_str(),
cuda_interfaces_str.size()});
std::vector<Json> const& columns = get<Array>(interfaces);
size_t n_columns = columns.size();
CHECK_GT(n_columns, 0) << "Number of columns must not eqaul to 0.";
auto const& typestr = get<String const>(columns[0]["typestr"]);
CHECK_EQ(typestr.size(), 3) << ColumnarErrors::TypestrFormat();
CHECK_NE(typestr.front(), '>') << ColumnarErrors::BigEndian();
this->FromDeviceColumnar(columns, has_missing, missing);
}
#if !defined(XGBOOST_USE_CUDA)
void SimpleCSRSource::FromDeviceColumnar(std::vector<Json> const& columns,
bool has_missing, float missing) {
LOG(FATAL) << "XGBoost version is not compiled with GPU support";
}
#endif // !defined(XGBOOST_USE_CUDA)
} // namespace data
} // namespace xgboost