Optimize cpu sketch allreduce for sparse data. (#6009)
* Bypass RABIT serialization reducer and use custom allgather based merging.
This commit is contained in:
parent
90355b4f00
commit
29b7fea572
@ -116,26 +116,14 @@ inline HistogramCuts SketchOnDMatrix(DMatrix *m, int32_t max_bins) {
|
||||
for (auto& column : column_sizes) {
|
||||
column.resize(info.num_col_, 0);
|
||||
}
|
||||
for (auto const& page : m->GetBatches<SparsePage>()) {
|
||||
page.data.HostVector();
|
||||
page.offset.HostVector();
|
||||
ParallelFor(page.Size(), threads, [&](size_t i) {
|
||||
auto &local_column_sizes = column_sizes.at(omp_get_thread_num());
|
||||
auto row = page[i];
|
||||
auto const *p_row = row.data();
|
||||
for (size_t j = 0; j < row.size(); ++j) {
|
||||
local_column_sizes.at(p_row[j].index)++;
|
||||
}
|
||||
});
|
||||
}
|
||||
std::vector<bst_row_t> reduced(info.num_col_, 0);
|
||||
|
||||
ParallelFor(info.num_col_, threads, [&](size_t i) {
|
||||
for (auto const &thread : column_sizes) {
|
||||
reduced[i] += thread[i];
|
||||
for (auto const& page : m->GetBatches<SparsePage>()) {
|
||||
auto const &entries_per_column =
|
||||
HostSketchContainer::CalcColumnSize(page, info.num_col_, threads);
|
||||
for (size_t i = 0; i < entries_per_column.size(); ++i) {
|
||||
reduced[i] += entries_per_column[i];
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
HostSketchContainer container(reduced, max_bins,
|
||||
HostSketchContainer::UseGroup(info));
|
||||
for (auto const &page : m->GetBatches<SparsePage>()) {
|
||||
|
||||
@ -25,34 +25,67 @@ HostSketchContainer::HostSketchContainer(std::vector<bst_row_t> columns_size,
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<bst_feature_t> LoadBalance(SparsePage const &page,
|
||||
std::vector<size_t> columns_size,
|
||||
size_t const nthreads) {
|
||||
/* Some sparse datasets have their mass concentrating on small
|
||||
* number of features. To avoid wating for a few threads running
|
||||
* forever, we here distirbute different number of columns to
|
||||
* different threads according to number of entries. */
|
||||
size_t const total_entries = page.data.Size();
|
||||
std::vector<bst_row_t>
|
||||
HostSketchContainer::CalcColumnSize(SparsePage const &batch,
|
||||
bst_feature_t const n_columns,
|
||||
size_t const nthreads) {
|
||||
auto page = batch.GetView();
|
||||
std::vector<std::vector<bst_row_t>> column_sizes(nthreads);
|
||||
for (auto &column : column_sizes) {
|
||||
column.resize(n_columns, 0);
|
||||
}
|
||||
|
||||
ParallelFor(page.Size(), nthreads, [&](size_t i) {
|
||||
auto &local_column_sizes = column_sizes.at(omp_get_thread_num());
|
||||
auto row = page[i];
|
||||
auto const *p_row = row.data();
|
||||
for (size_t j = 0; j < row.size(); ++j) {
|
||||
local_column_sizes.at(p_row[j].index)++;
|
||||
}
|
||||
});
|
||||
std::vector<bst_row_t> entries_per_columns(n_columns, 0);
|
||||
ParallelFor(n_columns, nthreads, [&](size_t i) {
|
||||
for (auto const &thread : column_sizes) {
|
||||
entries_per_columns[i] += thread[i];
|
||||
}
|
||||
});
|
||||
return entries_per_columns;
|
||||
}
|
||||
|
||||
std::vector<bst_feature_t> HostSketchContainer::LoadBalance(
|
||||
SparsePage const &batch, bst_feature_t n_columns, size_t const nthreads) {
|
||||
/* Some sparse datasets have their mass concentrating on small number of features. To
|
||||
* avoid wating for a few threads running forever, we here distirbute different number
|
||||
* of columns to different threads according to number of entries.
|
||||
*/
|
||||
auto page = batch.GetView();
|
||||
size_t const total_entries = page.data.size();
|
||||
size_t const entries_per_thread = common::DivRoundUp(total_entries, nthreads);
|
||||
|
||||
std::vector<bst_feature_t> cols_ptr(nthreads+1, 0);
|
||||
std::vector<std::vector<bst_row_t>> column_sizes(nthreads);
|
||||
for (auto& column : column_sizes) {
|
||||
column.resize(n_columns, 0);
|
||||
}
|
||||
std::vector<bst_row_t> entries_per_columns =
|
||||
CalcColumnSize(batch, n_columns, nthreads);
|
||||
std::vector<bst_feature_t> cols_ptr(nthreads + 1, 0);
|
||||
size_t count {0};
|
||||
size_t current_thread {1};
|
||||
|
||||
for (auto col : columns_size) {
|
||||
cols_ptr[current_thread]++; // add one column to thread
|
||||
for (auto col : entries_per_columns) {
|
||||
cols_ptr.at(current_thread)++; // add one column to thread
|
||||
count += col;
|
||||
if (count > entries_per_thread + 1) {
|
||||
CHECK_LE(count, total_entries);
|
||||
if (count > entries_per_thread) {
|
||||
current_thread++;
|
||||
count = 0;
|
||||
cols_ptr[current_thread] = cols_ptr[current_thread-1];
|
||||
cols_ptr.at(current_thread) = cols_ptr[current_thread-1];
|
||||
}
|
||||
}
|
||||
// Idle threads.
|
||||
for (; current_thread < cols_ptr.size() - 1; ++current_thread) {
|
||||
cols_ptr[current_thread+1] = cols_ptr[current_thread];
|
||||
}
|
||||
|
||||
return cols_ptr;
|
||||
}
|
||||
|
||||
@ -67,11 +100,10 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
|
||||
// Use group index for weights?
|
||||
auto batch = page.GetView();
|
||||
dmlc::OMPException exec;
|
||||
// Parallel over columns. Asumming the data is dense, each thread owns a set of
|
||||
// consecutive columns.
|
||||
// Parallel over columns. Each thread owns a set of consecutive columns.
|
||||
auto const ncol = static_cast<uint32_t>(info.num_col_);
|
||||
auto const is_dense = info.num_nonzero_ == info.num_col_ * info.num_row_;
|
||||
auto thread_columns_ptr = LoadBalance(page, columns_size_, nthread);
|
||||
auto thread_columns_ptr = LoadBalance(page, info.num_col_, nthread);
|
||||
|
||||
#pragma omp parallel num_threads(nthread)
|
||||
{
|
||||
@ -112,6 +144,132 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
|
||||
monitor_.Stop(__func__);
|
||||
}
|
||||
|
||||
void HostSketchContainer::GatherSketchInfo(
|
||||
std::vector<WQSketch::SummaryContainer> const &reduced,
|
||||
std::vector<size_t> *p_worker_segments,
|
||||
std::vector<bst_row_t> *p_sketches_scan,
|
||||
std::vector<WQSketch::Entry> *p_global_sketches) {
|
||||
auto& worker_segments = *p_worker_segments;
|
||||
worker_segments.resize(1, 0);
|
||||
auto world = rabit::GetWorldSize();
|
||||
auto rank = rabit::GetRank();
|
||||
auto n_columns = sketches_.size();
|
||||
|
||||
std::vector<bst_row_t> sketch_size;
|
||||
for (auto const& sketch : reduced) {
|
||||
sketch_size.push_back(sketch.size);
|
||||
}
|
||||
std::vector<bst_row_t>& sketches_scan = *p_sketches_scan;
|
||||
sketches_scan.resize((n_columns + 1) * world, 0);
|
||||
size_t beg_scan = rank * (n_columns + 1);
|
||||
std::partial_sum(sketch_size.cbegin(), sketch_size.cend(),
|
||||
sketches_scan.begin() + beg_scan + 1);
|
||||
// Gather all column pointers
|
||||
rabit::Allreduce<rabit::op::Sum>(sketches_scan.data(), sketches_scan.size());
|
||||
|
||||
for (int32_t i = 0; i < world; ++i) {
|
||||
size_t back = (i + 1) * (n_columns + 1) - 1;
|
||||
auto n_entries = sketches_scan.at(back);
|
||||
worker_segments.push_back(n_entries);
|
||||
}
|
||||
// Offset of sketch from each worker.
|
||||
std::partial_sum(worker_segments.begin(), worker_segments.end(),
|
||||
worker_segments.begin());
|
||||
CHECK_GE(worker_segments.size(), 1);
|
||||
auto total = worker_segments.back();
|
||||
|
||||
auto& global_sketches = *p_global_sketches;
|
||||
global_sketches.resize(total, WQSketch::Entry{0, 0, 0, 0});
|
||||
auto worker_sketch = Span<WQSketch::Entry>{global_sketches}.subspan(
|
||||
worker_segments[rank], worker_segments[rank + 1] - worker_segments[rank]);
|
||||
size_t cursor = 0;
|
||||
for (auto const &sketch : reduced) {
|
||||
std::copy(sketch.data, sketch.data + sketch.size,
|
||||
worker_sketch.begin() + cursor);
|
||||
cursor += sketch.size;
|
||||
}
|
||||
|
||||
static_assert(sizeof(WQSketch::Entry) / 4 == sizeof(float), "");
|
||||
rabit::Allreduce<rabit::op::Sum>(
|
||||
reinterpret_cast<float *>(global_sketches.data()),
|
||||
global_sketches.size() * sizeof(WQSketch::Entry) / sizeof(float));
|
||||
}
|
||||
|
||||
void HostSketchContainer::AllReduce(
|
||||
std::vector<WQSketch::SummaryContainer> *p_reduced,
|
||||
std::vector<int32_t>* p_num_cuts) {
|
||||
monitor_.Start(__func__);
|
||||
auto& num_cuts = *p_num_cuts;
|
||||
CHECK_EQ(num_cuts.size(), 0);
|
||||
auto &reduced = *p_reduced;
|
||||
reduced.resize(sketches_.size());
|
||||
|
||||
size_t n_columns = sketches_.size();
|
||||
rabit::Allreduce<rabit::op::Max>(&n_columns, 1);
|
||||
CHECK_EQ(n_columns, sketches_.size()) << "Number of columns differs across workers";
|
||||
|
||||
// Prune the intermediate num cuts for synchronization.
|
||||
std::vector<bst_row_t> global_column_size(columns_size_);
|
||||
rabit::Allreduce<rabit::op::Sum>(global_column_size.data(), global_column_size.size());
|
||||
|
||||
size_t nbytes = 0;
|
||||
for (size_t i = 0; i < sketches_.size(); ++i) {
|
||||
int32_t intermediate_num_cuts = static_cast<int32_t>(std::min(
|
||||
global_column_size[i], static_cast<size_t>(max_bins_ * WQSketch::kFactor)));
|
||||
if (global_column_size[i] != 0) {
|
||||
WQSketch::SummaryContainer out;
|
||||
sketches_[i].GetSummary(&out);
|
||||
reduced[i].Reserve(intermediate_num_cuts);
|
||||
CHECK(reduced[i].data);
|
||||
reduced[i].SetPrune(out, intermediate_num_cuts);
|
||||
nbytes = std::max(
|
||||
WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts),
|
||||
nbytes);
|
||||
}
|
||||
|
||||
num_cuts.push_back(intermediate_num_cuts);
|
||||
}
|
||||
auto world = rabit::GetWorldSize();
|
||||
if (world == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<size_t> worker_segments(1, 0); // CSC pointer to sketches.
|
||||
std::vector<bst_row_t> sketches_scan((n_columns + 1) * world, 0);
|
||||
|
||||
std::vector<WQSketch::Entry> global_sketches;
|
||||
this->GatherSketchInfo(reduced, &worker_segments, &sketches_scan,
|
||||
&global_sketches);
|
||||
|
||||
std::vector<WQSketch::SummaryContainer> final_sketches(n_columns);
|
||||
ParallelFor(n_columns, omp_get_max_threads(), [&](size_t fidx) {
|
||||
int32_t intermediate_num_cuts = num_cuts[fidx];
|
||||
auto nbytes =
|
||||
WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts);
|
||||
|
||||
for (int32_t i = 1; i < world + 1; ++i) {
|
||||
auto size = worker_segments.at(i) - worker_segments[i - 1];
|
||||
auto worker_sketches = Span<WQSketch::Entry>{global_sketches}.subspan(
|
||||
worker_segments[i - 1], size);
|
||||
auto worker_scan =
|
||||
Span<bst_row_t>(sketches_scan)
|
||||
.subspan((i - 1) * (n_columns + 1), (n_columns + 1));
|
||||
|
||||
auto worker_feature = worker_sketches.subspan(
|
||||
worker_scan[fidx], worker_scan[fidx + 1] - worker_scan[fidx]);
|
||||
CHECK(worker_feature.data());
|
||||
WQSummary<float, float> summary(worker_feature.data(),
|
||||
worker_feature.size());
|
||||
auto &out = final_sketches.at(fidx);
|
||||
out.Reduce(summary, nbytes);
|
||||
}
|
||||
|
||||
reduced.at(fidx).Reserve(intermediate_num_cuts);
|
||||
reduced.at(fidx).SetPrune(final_sketches.at(fidx), intermediate_num_cuts);
|
||||
});
|
||||
monitor_.Stop(__func__);
|
||||
}
|
||||
|
||||
void AddCutPoint(WQuantileSketch<float, float>::SummaryContainer const &summary,
|
||||
int max_bin, HistogramCuts *cuts) {
|
||||
size_t required_cuts = std::min(summary.size, static_cast<size_t>(max_bin));
|
||||
@ -126,44 +284,18 @@ void AddCutPoint(WQuantileSketch<float, float>::SummaryContainer const &summary,
|
||||
|
||||
void HostSketchContainer::MakeCuts(HistogramCuts* cuts) {
|
||||
monitor_.Start(__func__);
|
||||
rabit::Allreduce<rabit::op::Sum>(columns_size_.data(), columns_size_.size());
|
||||
std::vector<WQSketch::SummaryContainer> reduced(sketches_.size());
|
||||
std::vector<WQSketch::SummaryContainer> reduced;
|
||||
std::vector<int32_t> num_cuts;
|
||||
size_t nbytes = 0;
|
||||
for (size_t i = 0; i < sketches_.size(); ++i) {
|
||||
int32_t intermediate_num_cuts = static_cast<int32_t>(std::min(
|
||||
columns_size_[i], static_cast<size_t>(max_bins_ * WQSketch::kFactor)));
|
||||
if (columns_size_[i] != 0) {
|
||||
WQSketch::SummaryContainer out;
|
||||
sketches_[i].GetSummary(&out);
|
||||
reduced[i].Reserve(intermediate_num_cuts);
|
||||
CHECK(reduced[i].data);
|
||||
reduced[i].SetPrune(out, intermediate_num_cuts);
|
||||
}
|
||||
num_cuts.push_back(intermediate_num_cuts);
|
||||
nbytes = std::max(
|
||||
WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts), nbytes);
|
||||
}
|
||||
|
||||
if (rabit::IsDistributed()) {
|
||||
// FIXME(trivialfis): This call will allocate nbytes * num_columns on rabit, which
|
||||
// may generate oom error when data is sparse. To fix it, we need to:
|
||||
// - gather the column offsets over all workers.
|
||||
// - run rabit::allgather on sketch data to collect all data.
|
||||
// - merge all gathered sketches based on worker offsets and column offsets of data
|
||||
// from each worker.
|
||||
// See GPU implementation for details.
|
||||
rabit::SerializeReducer<WQSketch::SummaryContainer> sreducer;
|
||||
sreducer.Allreduce(dmlc::BeginPtr(reduced), nbytes, reduced.size());
|
||||
}
|
||||
this->AllReduce(&reduced, &num_cuts);
|
||||
|
||||
cuts->min_vals_.HostVector().resize(sketches_.size(), 0.0f);
|
||||
|
||||
for (size_t fid = 0; fid < reduced.size(); ++fid) {
|
||||
WQSketch::SummaryContainer a;
|
||||
size_t max_num_bins = std::min(num_cuts[fid], max_bins_);
|
||||
a.Reserve(max_num_bins + 1);
|
||||
CHECK(a.data);
|
||||
if (columns_size_[fid] != 0) {
|
||||
if (num_cuts[fid] != 0) {
|
||||
a.SetPrune(reduced[fid], max_num_bins + 1);
|
||||
CHECK(a.data && reduced[fid].data);
|
||||
const bst_float mval = a.data[0].value;
|
||||
@ -173,6 +305,7 @@ void HostSketchContainer::MakeCuts(HistogramCuts* cuts) {
|
||||
const float mval = 1e-5f;
|
||||
cuts->min_vals_.HostVector()[fid] = mval;
|
||||
}
|
||||
|
||||
AddCutPoint(a, max_num_bins, cuts);
|
||||
// push a value that is greater than anything
|
||||
const bst_float cpt
|
||||
|
||||
@ -166,6 +166,16 @@ struct WQSummary {
|
||||
* \param src source sketch
|
||||
*/
|
||||
inline void CopyFrom(const WQSummary &src) {
|
||||
if (!src.data) {
|
||||
CHECK_EQ(src.size, 0);
|
||||
size = 0;
|
||||
return;
|
||||
}
|
||||
if (!data) {
|
||||
CHECK_EQ(this->size, 0);
|
||||
CHECK_EQ(src.size, 0);
|
||||
return;
|
||||
}
|
||||
size = src.size;
|
||||
std::memcpy(data, src.data, sizeof(Entry) * size);
|
||||
}
|
||||
@ -721,6 +731,14 @@ class HostSketchContainer {
|
||||
return use_group_ind;
|
||||
}
|
||||
|
||||
static std::vector<bst_row_t> CalcColumnSize(SparsePage const &page,
|
||||
bst_feature_t const n_columns,
|
||||
size_t const nthreads);
|
||||
|
||||
static std::vector<bst_feature_t> LoadBalance(SparsePage const &page,
|
||||
bst_feature_t n_columns,
|
||||
size_t const nthreads);
|
||||
|
||||
static uint32_t SearchGroupIndFromRow(std::vector<bst_uint> const &group_ptr,
|
||||
size_t const base_rowid) {
|
||||
CHECK_LT(base_rowid, group_ptr.back())
|
||||
@ -730,6 +748,14 @@ class HostSketchContainer {
|
||||
group_ptr.cbegin() - 1;
|
||||
return group_ind;
|
||||
}
|
||||
// Gather sketches from all workers.
|
||||
void GatherSketchInfo(std::vector<WQSketch::SummaryContainer> const &reduced,
|
||||
std::vector<bst_row_t> *p_worker_segments,
|
||||
std::vector<bst_row_t> *p_sketches_scan,
|
||||
std::vector<WQSketch::Entry> *p_global_sketches);
|
||||
// Merge sketches from all workers.
|
||||
void AllReduce(std::vector<WQSketch::SummaryContainer> *p_reduced,
|
||||
std::vector<int32_t>* p_num_cuts);
|
||||
|
||||
/* \brief Push a CSR matrix. */
|
||||
void PushRowPage(SparsePage const& page, MetaInfo const& info);
|
||||
|
||||
@ -23,9 +23,9 @@ TEST(CAPI, XGDMatrixCreateFromMatDT) {
|
||||
std::shared_ptr<xgboost::DMatrix> *dmat =
|
||||
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
|
||||
xgboost::MetaInfo &info = (*dmat)->Info();
|
||||
ASSERT_EQ(info.num_col_, 2);
|
||||
ASSERT_EQ(info.num_row_, 3);
|
||||
ASSERT_EQ(info.num_nonzero_, 6);
|
||||
ASSERT_EQ(info.num_col_, 2ul);
|
||||
ASSERT_EQ(info.num_row_, 3ul);
|
||||
ASSERT_EQ(info.num_nonzero_, 6ul);
|
||||
|
||||
for (const auto &batch : (*dmat)->GetBatches<xgboost::SparsePage>()) {
|
||||
ASSERT_EQ(batch[0][0].fvalue, 0.0f);
|
||||
@ -38,9 +38,9 @@ TEST(CAPI, XGDMatrixCreateFromMatDT) {
|
||||
}
|
||||
|
||||
TEST(CAPI, XGDMatrixCreateFromMatOmp) {
|
||||
std::vector<int> num_rows = {100, 11374, 15000};
|
||||
std::vector<bst_ulong> num_rows = {100, 11374, 15000};
|
||||
for (auto row : num_rows) {
|
||||
int num_cols = 50;
|
||||
bst_ulong num_cols = 50;
|
||||
int num_missing = 5;
|
||||
DMatrixHandle handle;
|
||||
std::vector<float> data(num_cols * row, 1.5);
|
||||
|
||||
@ -159,10 +159,10 @@ TEST(CutsBuilder, SearchGroupInd) {
|
||||
HistogramCuts hmat;
|
||||
|
||||
size_t group_ind = HostSketchContainer::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 0);
|
||||
ASSERT_EQ(group_ind, 0);
|
||||
ASSERT_EQ(group_ind, 0ul);
|
||||
|
||||
group_ind = HostSketchContainer::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 5);
|
||||
ASSERT_EQ(group_ind, 2);
|
||||
ASSERT_EQ(group_ind, 2ul);
|
||||
|
||||
EXPECT_ANY_THROW(HostSketchContainer::SearchGroupIndFromRow(p_mat->Info().group_ptr_, 17));
|
||||
|
||||
@ -189,7 +189,7 @@ TEST(HistUtil, DenseCutsCategorical) {
|
||||
EXPECT_LT(cuts.MinValues()[0], x_sorted.front());
|
||||
EXPECT_GT(cuts_from_sketch.front(), x_sorted.front());
|
||||
EXPECT_GE(cuts_from_sketch.back(), x_sorted.back());
|
||||
EXPECT_EQ(cuts_from_sketch.size(), num_categories);
|
||||
EXPECT_EQ(cuts_from_sketch.size(), static_cast<size_t>(num_categories));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -162,7 +162,7 @@ inline void ValidateColumn(const HistogramCuts& cuts, int column_idx,
|
||||
|
||||
// Check all cut points are unique
|
||||
EXPECT_EQ(std::set<float>(cuts_begin, cuts_end).size(),
|
||||
cuts_end - cuts_begin);
|
||||
static_cast<size_t>(cuts_end - cuts_begin));
|
||||
|
||||
auto unique = std::set<float>(sorted_column.begin(), sorted_column.end());
|
||||
if (unique.size() <= num_bins) {
|
||||
@ -189,7 +189,7 @@ inline void ValidateCuts(const HistogramCuts& cuts, DMatrix* dmat,
|
||||
// Collect data into columns
|
||||
std::vector<std::vector<float>> columns(dmat->Info().num_col_);
|
||||
for (auto& batch : dmat->GetBatches<SparsePage>()) {
|
||||
ASSERT_GT(batch.Size(), 0);
|
||||
ASSERT_GT(batch.Size(), 0ul);
|
||||
for (auto i = 0ull; i < batch.Size(); i++) {
|
||||
for (auto e : batch[i]) {
|
||||
columns[e.index].push_back(e.fvalue);
|
||||
|
||||
@ -222,7 +222,7 @@ TEST(Json, ParseArray) {
|
||||
auto json = Json::Load(StringView{str.c_str(), str.size()});
|
||||
json = json["nodes"];
|
||||
std::vector<Json> arr = get<JsonArray>(json);
|
||||
ASSERT_EQ(arr.size(), 3);
|
||||
ASSERT_EQ(arr.size(), 3ul);
|
||||
Json v0 = arr[0];
|
||||
ASSERT_EQ(get<Integer>(v0["depth"]), 3);
|
||||
ASSERT_NEAR(get<Number>(v0["gain"]), 10.4866, kRtEps);
|
||||
@ -284,7 +284,7 @@ TEST(Json, EmptyArray) {
|
||||
std::istringstream iss(str);
|
||||
auto json = Json::Load(StringView{str.c_str(), str.size()});
|
||||
auto arr = get<JsonArray>(json["leaf_vector"]);
|
||||
ASSERT_EQ(arr.size(), 0);
|
||||
ASSERT_EQ(arr.size(), 0ul);
|
||||
}
|
||||
|
||||
TEST(Json, Boolean) {
|
||||
@ -315,7 +315,7 @@ TEST(Json, AssigningObjects) {
|
||||
Json json;
|
||||
json = JsonObject();
|
||||
json["Okay"] = JsonArray();
|
||||
ASSERT_EQ(get<JsonArray>(json["Okay"]).size(), 0);
|
||||
ASSERT_EQ(get<JsonArray>(json["Okay"]).size(), 0ul);
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
@ -5,14 +5,122 @@
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
|
||||
TEST(Quantile, LoadBalance) {
|
||||
size_t constexpr kRows = 1000, kCols = 100;
|
||||
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
||||
std::vector<bst_feature_t> cols_ptr;
|
||||
for (auto const &page : m->GetBatches<SparsePage>()) {
|
||||
cols_ptr = HostSketchContainer::LoadBalance(page, kCols, 13);
|
||||
}
|
||||
size_t n_cols = 0;
|
||||
for (size_t i = 1; i < cols_ptr.size(); ++i) {
|
||||
n_cols += cols_ptr[i] - cols_ptr[i - 1];
|
||||
}
|
||||
CHECK_EQ(n_cols, kCols);
|
||||
}
|
||||
|
||||
void TestDistributedQuantile(size_t rows, size_t cols) {
|
||||
std::string msg {"Skipping AllReduce test"};
|
||||
int32_t constexpr kWorkers = 4;
|
||||
InitRabitContext(msg, kWorkers);
|
||||
auto world = rabit::GetWorldSize();
|
||||
if (world != 1) {
|
||||
ASSERT_EQ(world, kWorkers);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<MetaInfo> infos(2);
|
||||
auto& h_weights = infos.front().weights_.HostVector();
|
||||
h_weights.resize(rows);
|
||||
SimpleLCG lcg;
|
||||
SimpleRealUniformDistribution<float> dist(3, 1000);
|
||||
std::generate(h_weights.begin(), h_weights.end(), [&]() { return dist(&lcg); });
|
||||
std::vector<bst_row_t> column_size(cols, rows);
|
||||
size_t n_bins = 64;
|
||||
|
||||
// Generate cuts for distributed environment.
|
||||
auto sparsity = 0.5f;
|
||||
auto rank = rabit::GetRank();
|
||||
HostSketchContainer sketch_distributed(column_size, n_bins, false);
|
||||
auto m = RandomDataGenerator{rows, cols, sparsity}
|
||||
.Seed(rank)
|
||||
.Lower(.0f)
|
||||
.Upper(1.0f)
|
||||
.GenerateDMatrix();
|
||||
for (auto const &page : m->GetBatches<SparsePage>()) {
|
||||
sketch_distributed.PushRowPage(page, m->Info());
|
||||
}
|
||||
HistogramCuts distributed_cuts;
|
||||
sketch_distributed.MakeCuts(&distributed_cuts);
|
||||
|
||||
// Generate cuts for single node environment
|
||||
rabit::Finalize();
|
||||
CHECK_EQ(rabit::GetWorldSize(), 1);
|
||||
std::for_each(column_size.begin(), column_size.end(), [=](auto& size) { size *= world; });
|
||||
HostSketchContainer sketch_on_single_node(column_size, n_bins, false);
|
||||
for (auto rank = 0; rank < world; ++rank) {
|
||||
auto m = RandomDataGenerator{rows, cols, sparsity}
|
||||
.Seed(rank)
|
||||
.Lower(.0f)
|
||||
.Upper(1.0f)
|
||||
.GenerateDMatrix();
|
||||
for (auto const &page : m->GetBatches<SparsePage>()) {
|
||||
sketch_on_single_node.PushRowPage(page, m->Info());
|
||||
}
|
||||
}
|
||||
|
||||
HistogramCuts single_node_cuts;
|
||||
sketch_on_single_node.MakeCuts(&single_node_cuts);
|
||||
|
||||
auto const& sptrs = single_node_cuts.Ptrs();
|
||||
auto const& dptrs = distributed_cuts.Ptrs();
|
||||
auto const& svals = single_node_cuts.Values();
|
||||
auto const& dvals = distributed_cuts.Values();
|
||||
auto const& smins = single_node_cuts.MinValues();
|
||||
auto const& dmins = distributed_cuts.MinValues();
|
||||
|
||||
ASSERT_EQ(sptrs.size(), dptrs.size());
|
||||
for (size_t i = 0; i < sptrs.size(); ++i) {
|
||||
ASSERT_EQ(sptrs[i], dptrs[i]);
|
||||
}
|
||||
|
||||
ASSERT_EQ(svals.size(), dvals.size());
|
||||
for (size_t i = 0; i < svals.size(); ++i) {
|
||||
ASSERT_NEAR(svals[i], dvals[i], 2e-2f);
|
||||
}
|
||||
|
||||
ASSERT_EQ(smins.size(), dmins.size());
|
||||
for (size_t i = 0; i < smins.size(); ++i) {
|
||||
ASSERT_FLOAT_EQ(smins[i], dmins[i]);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Quantile, DistributedBasic) {
|
||||
#if defined(__unix__)
|
||||
constexpr size_t kRows = 10, kCols = 10;
|
||||
TestDistributedQuantile(kRows, kCols);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(Quantile, Distributed) {
|
||||
#if defined(__unix__)
|
||||
constexpr size_t kRows = 1000, kCols = 200;
|
||||
TestDistributedQuantile(kRows, kCols);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(Quantile, SameOnAllWorkers) {
|
||||
#if defined(__unix__)
|
||||
std::string msg{"Skipping Quantile AllreduceBasic test"};
|
||||
size_t constexpr kWorkers = 4;
|
||||
int32_t constexpr kWorkers = 4;
|
||||
InitRabitContext(msg, kWorkers);
|
||||
auto world = rabit::GetWorldSize();
|
||||
if (world != 1) {
|
||||
CHECK_EQ(world, kWorkers);
|
||||
} else {
|
||||
LOG(WARNING) << msg;
|
||||
return;
|
||||
}
|
||||
|
||||
@ -72,6 +180,8 @@ TEST(Quantile, SameOnAllWorkers) {
|
||||
}
|
||||
}
|
||||
});
|
||||
rabit::Finalize();
|
||||
#endif // defined(__unix__)
|
||||
}
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
inline void InitRabitContext(std::string msg, size_t n_workers) {
|
||||
inline void InitRabitContext(std::string msg, int32_t n_workers) {
|
||||
auto port = std::getenv("DMLC_TRACKER_PORT");
|
||||
std::string port_str;
|
||||
if (port) {
|
||||
@ -35,7 +35,7 @@ template <typename Fn> void RunWithSeedsAndBins(size_t rows, Fn fn) {
|
||||
for (size_t i = 0; i < bins.size() - 1; ++i) {
|
||||
bins[i] = i * 35 + 2;
|
||||
}
|
||||
bins.back() = rows + 80; // provide a bin number greater than rows.
|
||||
bins.back() = rows + 160; // provide a bin number greater than rows.
|
||||
|
||||
std::vector<MetaInfo> infos(2);
|
||||
auto& h_weights = infos.front().weights_.HostVector();
|
||||
|
||||
@ -501,17 +501,20 @@ class TestWithDask:
|
||||
num_boost_round=num_rounds,
|
||||
evals=[(m, 'train')])['history']
|
||||
note(history)
|
||||
assert tm.non_increasing(history['train'][dataset.metric])
|
||||
history = history['train'][dataset.metric]
|
||||
assert tm.non_increasing(history)
|
||||
# Make sure that it's decreasing
|
||||
assert history[-1] < history[0]
|
||||
|
||||
@given(params=hist_parameter_strategy,
|
||||
num_rounds=strategies.integers(10, 20),
|
||||
num_rounds=strategies.integers(20, 30),
|
||||
dataset=tm.dataset_strategy)
|
||||
@settings(deadline=None)
|
||||
def test_hist(self, params, num_rounds, dataset, client):
|
||||
self.run_updater_test(client, params, num_rounds, dataset, 'hist')
|
||||
|
||||
@given(params=exact_parameter_strategy,
|
||||
num_rounds=strategies.integers(10, 20),
|
||||
num_rounds=strategies.integers(20, 30),
|
||||
dataset=tm.dataset_strategy)
|
||||
@settings(deadline=None)
|
||||
def test_approx(self, client, params, num_rounds, dataset):
|
||||
@ -524,8 +527,7 @@ class TestWithDask:
|
||||
exe = None
|
||||
for possible_path in {'./testxgboost', './build/testxgboost',
|
||||
'../build/testxgboost',
|
||||
'../cpu-build/testxgboost',
|
||||
'../gpu-build/testxgboost'}:
|
||||
'../cpu-build/testxgboost'}:
|
||||
if os.path.exists(possible_path):
|
||||
exe = possible_path
|
||||
if exe is None:
|
||||
@ -542,7 +544,7 @@ class TestWithDask:
|
||||
port = port.split('=')
|
||||
env = os.environ.copy()
|
||||
env[port[0]] = port[1]
|
||||
return subprocess.run([exe, test], env=env, stdout=subprocess.PIPE)
|
||||
return subprocess.run([exe, test], env=env, capture_output=True)
|
||||
|
||||
with LocalCluster(n_workers=4) as cluster:
|
||||
with Client(cluster) as client:
|
||||
@ -555,6 +557,7 @@ class TestWithDask:
|
||||
workers=workers,
|
||||
rabit_args=rabit_args)
|
||||
results = client.gather(futures)
|
||||
|
||||
for ret in results:
|
||||
msg = ret.stdout.decode('utf-8')
|
||||
assert msg.find('1 test from Quantile') != -1, msg
|
||||
@ -563,4 +566,14 @@ class TestWithDask:
|
||||
@pytest.mark.skipif(**tm.no_dask())
|
||||
@pytest.mark.gtest
|
||||
def test_quantile_basic(self):
|
||||
self.run_quantile('DistributedBasic')
|
||||
|
||||
@pytest.mark.skipif(**tm.no_dask())
|
||||
@pytest.mark.gtest
|
||||
def test_quantile(self):
|
||||
self.run_quantile('Distributed')
|
||||
|
||||
@pytest.mark.skipif(**tm.no_dask())
|
||||
@pytest.mark.gtest
|
||||
def test_quantile_same_on_all_workers(self):
|
||||
self.run_quantile('SameOnAllWorkers')
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user