640 lines
20 KiB
C++
640 lines
20 KiB
C++
/*!
|
|
* Copyright 2017-2020 by Contributors
|
|
* \file hist_util.h
|
|
* \brief Utility for fast histogram aggregation
|
|
* \author Philip Cho, Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_COMMON_HIST_UTIL_H_
|
|
#define XGBOOST_COMMON_HIST_UTIL_H_
|
|
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
#include <limits>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <utility>
|
|
#include <map>
|
|
|
|
#include "row_set.h"
|
|
#include "common.h"
|
|
#include "threading_utils.h"
|
|
#include "../tree/param.h"
|
|
#include "./quantile.h"
|
|
#include "./timer.h"
|
|
#include "../include/rabit/rabit.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
/*!
|
|
* \brief A single row in global histogram index.
|
|
* Directly represent the global index in the histogram entry.
|
|
*/
|
|
using GHistIndexRow = Span<uint32_t const>;
|
|
|
|
// A CSC matrix representing histogram cuts, used in CPU quantile hist.
|
|
// The cut values represent upper bounds of bins containing approximately equal numbers of elements
|
|
class HistogramCuts {
|
|
protected:
|
|
using BinIdx = uint32_t;
|
|
|
|
public:
|
|
HostDeviceVector<bst_float> cut_values_; // NOLINT
|
|
HostDeviceVector<uint32_t> cut_ptrs_; // NOLINT
|
|
// storing minimum value in a sketch set.
|
|
HostDeviceVector<float> min_vals_; // NOLINT
|
|
|
|
HistogramCuts();
|
|
HistogramCuts(HistogramCuts const& that) {
|
|
cut_values_.Resize(that.cut_values_.Size());
|
|
cut_ptrs_.Resize(that.cut_ptrs_.Size());
|
|
min_vals_.Resize(that.min_vals_.Size());
|
|
cut_values_.Copy(that.cut_values_);
|
|
cut_ptrs_.Copy(that.cut_ptrs_);
|
|
min_vals_.Copy(that.min_vals_);
|
|
}
|
|
|
|
HistogramCuts(HistogramCuts&& that) noexcept(true) {
|
|
*this = std::forward<HistogramCuts&&>(that);
|
|
}
|
|
|
|
HistogramCuts& operator=(HistogramCuts const& that) {
|
|
cut_values_.Resize(that.cut_values_.Size());
|
|
cut_ptrs_.Resize(that.cut_ptrs_.Size());
|
|
min_vals_.Resize(that.min_vals_.Size());
|
|
cut_values_.Copy(that.cut_values_);
|
|
cut_ptrs_.Copy(that.cut_ptrs_);
|
|
min_vals_.Copy(that.min_vals_);
|
|
return *this;
|
|
}
|
|
|
|
HistogramCuts& operator=(HistogramCuts&& that) noexcept(true) {
|
|
cut_ptrs_ = std::move(that.cut_ptrs_);
|
|
cut_values_ = std::move(that.cut_values_);
|
|
min_vals_ = std::move(that.min_vals_);
|
|
return *this;
|
|
}
|
|
|
|
uint32_t FeatureBins(uint32_t feature) const {
|
|
return cut_ptrs_.ConstHostVector().at(feature + 1) -
|
|
cut_ptrs_.ConstHostVector()[feature];
|
|
}
|
|
|
|
// Getters. Cuts should be of no use after building histogram indices, but currently
|
|
// it's deeply linked with quantile_hist, gpu sketcher and gpu_hist. So we preserve
|
|
// these for now.
|
|
std::vector<uint32_t> const& Ptrs() const { return cut_ptrs_.ConstHostVector(); }
|
|
std::vector<float> const& Values() const { return cut_values_.ConstHostVector(); }
|
|
std::vector<float> const& MinValues() const { return min_vals_.ConstHostVector(); }
|
|
|
|
size_t TotalBins() const { return cut_ptrs_.ConstHostVector().back(); }
|
|
|
|
// Return the index of a cut point that is strictly greater than the input
|
|
// value, or the last available index if none exists
|
|
BinIdx SearchBin(float value, uint32_t column_id) const {
|
|
auto beg = cut_ptrs_.ConstHostVector().at(column_id);
|
|
auto end = cut_ptrs_.ConstHostVector().at(column_id + 1);
|
|
const auto &values = cut_values_.ConstHostVector();
|
|
auto it = std::upper_bound(values.cbegin() + beg, values.cbegin() + end, value);
|
|
BinIdx idx = it - values.cbegin();
|
|
if (idx == end) {
|
|
idx -= 1;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
BinIdx SearchBin(Entry const& e) const {
|
|
return SearchBin(e.fvalue, e.index);
|
|
}
|
|
};
|
|
|
|
inline HistogramCuts SketchOnDMatrix(DMatrix *m, int32_t max_bins) {
|
|
HistogramCuts out;
|
|
auto const& info = m->Info();
|
|
const auto threads = omp_get_max_threads();
|
|
std::vector<std::vector<bst_row_t>> column_sizes(threads);
|
|
for (auto& column : column_sizes) {
|
|
column.resize(info.num_col_, 0);
|
|
}
|
|
std::vector<bst_row_t> reduced(info.num_col_, 0);
|
|
for (auto const& page : m->GetBatches<SparsePage>()) {
|
|
auto const &entries_per_column =
|
|
HostSketchContainer::CalcColumnSize(page, info.num_col_, threads);
|
|
for (size_t i = 0; i < entries_per_column.size(); ++i) {
|
|
reduced[i] += entries_per_column[i];
|
|
}
|
|
}
|
|
HostSketchContainer container(reduced, max_bins,
|
|
HostSketchContainer::UseGroup(info));
|
|
for (auto const &page : m->GetBatches<SparsePage>()) {
|
|
container.PushRowPage(page, info);
|
|
}
|
|
container.MakeCuts(&out);
|
|
return out;
|
|
}
|
|
|
|
enum BinTypeSize {
|
|
kUint8BinsTypeSize = 1,
|
|
kUint16BinsTypeSize = 2,
|
|
kUint32BinsTypeSize = 4
|
|
};
|
|
|
|
struct Index {
|
|
Index() {
|
|
SetBinTypeSize(binTypeSize_);
|
|
}
|
|
Index(const Index& i) = delete;
|
|
Index& operator=(Index i) = delete;
|
|
Index(Index&& i) = delete;
|
|
Index& operator=(Index&& i) = delete;
|
|
uint32_t operator[](size_t i) const {
|
|
if (offset_ptr_ != nullptr) {
|
|
return func_(data_ptr_, i) + offset_ptr_[i%p_];
|
|
} else {
|
|
return func_(data_ptr_, i);
|
|
}
|
|
}
|
|
void SetBinTypeSize(BinTypeSize binTypeSize) {
|
|
binTypeSize_ = binTypeSize;
|
|
switch (binTypeSize) {
|
|
case kUint8BinsTypeSize:
|
|
func_ = &GetValueFromUint8;
|
|
break;
|
|
case kUint16BinsTypeSize:
|
|
func_ = &GetValueFromUint16;
|
|
break;
|
|
case kUint32BinsTypeSize:
|
|
func_ = &GetValueFromUint32;
|
|
break;
|
|
default:
|
|
CHECK(binTypeSize == kUint8BinsTypeSize ||
|
|
binTypeSize == kUint16BinsTypeSize ||
|
|
binTypeSize == kUint32BinsTypeSize);
|
|
}
|
|
}
|
|
BinTypeSize GetBinTypeSize() const {
|
|
return binTypeSize_;
|
|
}
|
|
template<typename T>
|
|
T* data() const { // NOLINT
|
|
return static_cast<T*>(data_ptr_);
|
|
}
|
|
uint32_t* Offset() const {
|
|
return offset_ptr_;
|
|
}
|
|
size_t OffsetSize() const {
|
|
return offset_.size();
|
|
}
|
|
size_t Size() const {
|
|
return data_.size() / (binTypeSize_);
|
|
}
|
|
void Resize(const size_t nBytesData) {
|
|
data_.resize(nBytesData);
|
|
data_ptr_ = reinterpret_cast<void*>(data_.data());
|
|
}
|
|
void ResizeOffset(const size_t nDisps) {
|
|
offset_.resize(nDisps);
|
|
offset_ptr_ = offset_.data();
|
|
p_ = nDisps;
|
|
}
|
|
std::vector<uint8_t>::const_iterator begin() const { // NOLINT
|
|
return data_.begin();
|
|
}
|
|
std::vector<uint8_t>::const_iterator end() const { // NOLINT
|
|
return data_.end();
|
|
}
|
|
|
|
private:
|
|
static uint32_t GetValueFromUint8(void *t, size_t i) {
|
|
return reinterpret_cast<uint8_t*>(t)[i];
|
|
}
|
|
static uint32_t GetValueFromUint16(void* t, size_t i) {
|
|
return reinterpret_cast<uint16_t*>(t)[i];
|
|
}
|
|
static uint32_t GetValueFromUint32(void* t, size_t i) {
|
|
return reinterpret_cast<uint32_t*>(t)[i];
|
|
}
|
|
|
|
using Func = uint32_t (*)(void*, size_t);
|
|
|
|
std::vector<uint8_t> data_;
|
|
std::vector<uint32_t> offset_; // size of this field is equal to number of features
|
|
void* data_ptr_;
|
|
BinTypeSize binTypeSize_ {kUint8BinsTypeSize};
|
|
size_t p_ {1};
|
|
uint32_t* offset_ptr_ {nullptr};
|
|
Func func_;
|
|
};
|
|
|
|
|
|
/*!
|
|
* \brief preprocessed global index matrix, in CSR format
|
|
*
|
|
* Transform floating values to integer index in histogram This is a global histogram
|
|
* index for CPU histogram. On GPU ellpack page is used.
|
|
*/
|
|
struct GHistIndexMatrix {
|
|
/*! \brief row pointer to rows by element position */
|
|
std::vector<size_t> row_ptr;
|
|
/*! \brief The index data */
|
|
Index index;
|
|
/*! \brief hit count of each index */
|
|
std::vector<size_t> hit_count;
|
|
/*! \brief The corresponding cuts */
|
|
HistogramCuts cut;
|
|
DMatrix* p_fmat;
|
|
size_t max_num_bins;
|
|
// Create a global histogram matrix, given cut
|
|
void Init(DMatrix* p_fmat, int max_num_bins);
|
|
|
|
template<typename BinIdxType>
|
|
void SetIndexDataForDense(common::Span<BinIdxType> index_data_span,
|
|
size_t batch_threads, const SparsePage& batch,
|
|
size_t rbegin, common::Span<const uint32_t> offsets_span,
|
|
size_t nbins);
|
|
|
|
// specific method for sparse data as no posibility to reduce allocated memory
|
|
void SetIndexDataForSparse(common::Span<uint32_t> index_data_span,
|
|
size_t batch_threads, const SparsePage& batch,
|
|
size_t rbegin, size_t nbins);
|
|
|
|
void ResizeIndex(const size_t rbegin, const SparsePage& batch,
|
|
const size_t n_offsets, const size_t n_index,
|
|
const bool isDense);
|
|
|
|
inline void GetFeatureCounts(size_t* counts) const {
|
|
auto nfeature = cut.Ptrs().size() - 1;
|
|
for (unsigned fid = 0; fid < nfeature; ++fid) {
|
|
auto ibegin = cut.Ptrs()[fid];
|
|
auto iend = cut.Ptrs()[fid + 1];
|
|
for (auto i = ibegin; i < iend; ++i) {
|
|
counts[fid] += hit_count[i];
|
|
}
|
|
}
|
|
}
|
|
inline bool IsDense() const {
|
|
return isDense_;
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> hit_count_tloc_;
|
|
bool isDense_;
|
|
};
|
|
|
|
struct GHistIndexBlock {
|
|
const size_t* row_ptr;
|
|
const uint32_t* index;
|
|
|
|
inline GHistIndexBlock(const size_t* row_ptr, const uint32_t* index)
|
|
: row_ptr(row_ptr), index(index) {}
|
|
|
|
// get i-th row
|
|
inline GHistIndexRow operator[](size_t i) const {
|
|
return {&index[0] + row_ptr[i], row_ptr[i + 1] - row_ptr[i]};
|
|
}
|
|
};
|
|
|
|
class ColumnMatrix;
|
|
|
|
class GHistIndexBlockMatrix {
|
|
public:
|
|
void Init(const GHistIndexMatrix& gmat,
|
|
const ColumnMatrix& colmat,
|
|
const tree::TrainParam& param);
|
|
|
|
inline GHistIndexBlock operator[](size_t i) const {
|
|
return {blocks_[i].row_ptr_begin, blocks_[i].index_begin};
|
|
}
|
|
|
|
inline size_t GetNumBlock() const {
|
|
return blocks_.size();
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> row_ptr_;
|
|
std::vector<uint32_t> index_;
|
|
const HistogramCuts* cut_;
|
|
struct Block {
|
|
const size_t* row_ptr_begin;
|
|
const size_t* row_ptr_end;
|
|
const uint32_t* index_begin;
|
|
const uint32_t* index_end;
|
|
};
|
|
std::vector<Block> blocks_;
|
|
};
|
|
|
|
template<typename GradientSumT>
|
|
using GHistRow = Span<xgboost::detail::GradientPairInternal<GradientSumT> >;
|
|
|
|
/*!
|
|
* \brief fill a histogram by zeros
|
|
*/
|
|
template<typename GradientSumT>
|
|
void InitilizeHistByZeroes(GHistRow<GradientSumT> hist, size_t begin, size_t end);
|
|
|
|
/*!
|
|
* \brief Increment hist as dst += add in range [begin, end)
|
|
*/
|
|
template<typename GradientSumT>
|
|
void IncrementHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> add,
|
|
size_t begin, size_t end);
|
|
|
|
/*!
|
|
* \brief Copy hist from src to dst in range [begin, end)
|
|
*/
|
|
template<typename GradientSumT>
|
|
void CopyHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src,
|
|
size_t begin, size_t end);
|
|
|
|
/*!
|
|
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
|
|
*/
|
|
template<typename GradientSumT>
|
|
void SubtractionHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src1,
|
|
const GHistRow<GradientSumT> src2,
|
|
size_t begin, size_t end);
|
|
|
|
/*!
|
|
* \brief histogram of gradient statistics for multiple nodes
|
|
*/
|
|
template<typename GradientSumT>
|
|
class HistCollection {
|
|
public:
|
|
using GHistRowT = GHistRow<GradientSumT>;
|
|
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
|
|
|
|
// access histogram for i-th node
|
|
GHistRowT operator[](bst_uint nid) const {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
CHECK_NE(row_ptr_[nid], kMax);
|
|
GradientPairT* ptr =
|
|
const_cast<GradientPairT*>(dmlc::BeginPtr(data_) + row_ptr_[nid]);
|
|
return {ptr, nbins_};
|
|
}
|
|
|
|
// have we computed a histogram for i-th node?
|
|
bool RowExists(bst_uint nid) const {
|
|
const uint32_t k_max = std::numeric_limits<uint32_t>::max();
|
|
return (nid < row_ptr_.size() && row_ptr_[nid] != k_max);
|
|
}
|
|
|
|
// initialize histogram collection
|
|
void Init(uint32_t nbins) {
|
|
if (nbins_ != nbins) {
|
|
nbins_ = nbins;
|
|
// quite expensive operation, so let's do this only once
|
|
data_.clear();
|
|
}
|
|
row_ptr_.clear();
|
|
n_nodes_added_ = 0;
|
|
}
|
|
|
|
// create an empty histogram for i-th node
|
|
void AddHistRow(bst_uint nid) {
|
|
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
|
|
if (nid >= row_ptr_.size()) {
|
|
row_ptr_.resize(nid + 1, kMax);
|
|
}
|
|
CHECK_EQ(row_ptr_[nid], kMax);
|
|
|
|
if (data_.size() < nbins_ * (nid + 1)) {
|
|
data_.resize(nbins_ * (nid + 1));
|
|
}
|
|
|
|
row_ptr_[nid] = nbins_ * n_nodes_added_;
|
|
n_nodes_added_++;
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_ = 0;
|
|
/*! \brief amount of active nodes in hist collection */
|
|
uint32_t n_nodes_added_ = 0;
|
|
|
|
std::vector<GradientPairT> data_;
|
|
|
|
/*! \brief row_ptr_[nid] locates bin for histogram of node nid */
|
|
std::vector<size_t> row_ptr_;
|
|
};
|
|
|
|
/*!
|
|
* \brief Stores temporary histograms to compute them in parallel
|
|
* Supports processing multiple tree-nodes for nested parallelism
|
|
* Able to reduce histograms across threads in efficient way
|
|
*/
|
|
template<typename GradientSumT>
|
|
class ParallelGHistBuilder {
|
|
public:
|
|
using GHistRowT = GHistRow<GradientSumT>;
|
|
|
|
void Init(size_t nbins) {
|
|
if (nbins != nbins_) {
|
|
hist_buffer_.Init(nbins);
|
|
nbins_ = nbins;
|
|
}
|
|
}
|
|
|
|
// Add new elements if needed, mark all hists as unused
|
|
// targeted_hists - already allocated hists which should contain final results after Reduce() call
|
|
void Reset(size_t nthreads, size_t nodes, const BlockedSpace2d& space,
|
|
const std::vector<GHistRowT>& targeted_hists) {
|
|
hist_buffer_.Init(nbins_);
|
|
tid_nid_to_hist_.clear();
|
|
hist_memory_.clear();
|
|
threads_to_nids_map_.clear();
|
|
|
|
targeted_hists_ = targeted_hists;
|
|
|
|
CHECK_EQ(nodes, targeted_hists.size());
|
|
|
|
nodes_ = nodes;
|
|
nthreads_ = nthreads;
|
|
|
|
MatchThreadsToNodes(space);
|
|
AllocateAdditionalHistograms();
|
|
MatchNodeNidPairToHist();
|
|
|
|
hist_was_used_.resize(nthreads * nodes_);
|
|
std::fill(hist_was_used_.begin(), hist_was_used_.end(), static_cast<int>(false));
|
|
}
|
|
|
|
// Get specified hist, initialize hist by zeros if it wasn't used before
|
|
GHistRowT GetInitializedHist(size_t tid, size_t nid) {
|
|
CHECK_LT(nid, nodes_);
|
|
CHECK_LT(tid, nthreads_);
|
|
|
|
size_t idx = tid_nid_to_hist_.at({tid, nid});
|
|
GHistRowT hist = hist_memory_[idx];
|
|
|
|
if (!hist_was_used_[tid * nodes_ + nid]) {
|
|
InitilizeHistByZeroes(hist, 0, hist.size());
|
|
hist_was_used_[tid * nodes_ + nid] = static_cast<int>(true);
|
|
}
|
|
|
|
return hist;
|
|
}
|
|
|
|
// Reduce following bins (begin, end] for nid-node in dst across threads
|
|
void ReduceHist(size_t nid, size_t begin, size_t end) {
|
|
CHECK_GT(end, begin);
|
|
CHECK_LT(nid, nodes_);
|
|
|
|
GHistRowT dst = targeted_hists_[nid];
|
|
|
|
bool is_updated = false;
|
|
for (size_t tid = 0; tid < nthreads_; ++tid) {
|
|
if (hist_was_used_[tid * nodes_ + nid]) {
|
|
is_updated = true;
|
|
const size_t idx = tid_nid_to_hist_.at({tid, nid});
|
|
GHistRowT src = hist_memory_[idx];
|
|
|
|
if (dst.data() != src.data()) {
|
|
IncrementHist(dst, src, begin, end);
|
|
}
|
|
}
|
|
}
|
|
if (!is_updated) {
|
|
// In distributed mode - some tree nodes can be empty on local machines,
|
|
// So we need just set local hist by zeros in this case
|
|
InitilizeHistByZeroes(dst, begin, end);
|
|
}
|
|
}
|
|
|
|
protected:
|
|
void MatchThreadsToNodes(const BlockedSpace2d& space) {
|
|
const size_t space_size = space.Size();
|
|
const size_t chunck_size = space_size / nthreads_ + !!(space_size % nthreads_);
|
|
|
|
threads_to_nids_map_.resize(nthreads_ * nodes_, false);
|
|
|
|
for (size_t tid = 0; tid < nthreads_; ++tid) {
|
|
size_t begin = chunck_size * tid;
|
|
size_t end = std::min(begin + chunck_size, space_size);
|
|
|
|
if (begin < space_size) {
|
|
size_t nid_begin = space.GetFirstDimension(begin);
|
|
size_t nid_end = space.GetFirstDimension(end-1);
|
|
|
|
for (size_t nid = nid_begin; nid <= nid_end; ++nid) {
|
|
// true - means thread 'tid' will work to compute partial hist for node 'nid'
|
|
threads_to_nids_map_[tid * nodes_ + nid] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AllocateAdditionalHistograms() {
|
|
size_t hist_allocated_additionally = 0;
|
|
|
|
for (size_t nid = 0; nid < nodes_; ++nid) {
|
|
int nthreads_for_nid = 0;
|
|
|
|
for (size_t tid = 0; tid < nthreads_; ++tid) {
|
|
if (threads_to_nids_map_[tid * nodes_ + nid]) {
|
|
nthreads_for_nid++;
|
|
}
|
|
}
|
|
|
|
// In distributed mode - some tree nodes can be empty on local machines,
|
|
// set nthreads_for_nid to 0 in this case.
|
|
// In another case - allocate additional (nthreads_for_nid - 1) histograms,
|
|
// because one is already allocated externally (will store final result for the node).
|
|
hist_allocated_additionally += std::max<int>(0, nthreads_for_nid - 1);
|
|
}
|
|
|
|
for (size_t i = 0; i < hist_allocated_additionally; ++i) {
|
|
hist_buffer_.AddHistRow(i);
|
|
}
|
|
}
|
|
|
|
void MatchNodeNidPairToHist() {
|
|
size_t hist_total = 0;
|
|
size_t hist_allocated_additionally = 0;
|
|
|
|
for (size_t nid = 0; nid < nodes_; ++nid) {
|
|
bool first_hist = true;
|
|
for (size_t tid = 0; tid < nthreads_; ++tid) {
|
|
if (threads_to_nids_map_[tid * nodes_ + nid]) {
|
|
if (first_hist) {
|
|
hist_memory_.push_back(targeted_hists_[nid]);
|
|
first_hist = false;
|
|
} else {
|
|
hist_memory_.push_back(hist_buffer_[hist_allocated_additionally]);
|
|
hist_allocated_additionally++;
|
|
}
|
|
// map pair {tid, nid} to index of allocated histogram from hist_memory_
|
|
tid_nid_to_hist_[{tid, nid}] = hist_total++;
|
|
CHECK_EQ(hist_total, hist_memory_.size());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*! \brief number of bins in each histogram */
|
|
size_t nbins_ = 0;
|
|
/*! \brief number of threads for parallel computation */
|
|
size_t nthreads_ = 0;
|
|
/*! \brief number of nodes which will be processed in parallel */
|
|
size_t nodes_ = 0;
|
|
/*! \brief Buffer for additional histograms for Parallel processing */
|
|
HistCollection<GradientSumT> hist_buffer_;
|
|
/*!
|
|
* \brief Marks which hists were used, it means that they should be merged.
|
|
* Contains only {true or false} values
|
|
* but 'int' is used instead of 'bool', because std::vector<bool> isn't thread safe
|
|
*/
|
|
std::vector<int> hist_was_used_;
|
|
|
|
/*! \brief Buffer for additional histograms for Parallel processing */
|
|
std::vector<bool> threads_to_nids_map_;
|
|
/*! \brief Contains histograms for final results */
|
|
std::vector<GHistRowT> targeted_hists_;
|
|
/*! \brief Allocated memory for histograms used for construction */
|
|
std::vector<GHistRowT> hist_memory_;
|
|
/*! \brief map pair {tid, nid} to index of allocated histogram from hist_memory_ */
|
|
std::map<std::pair<size_t, size_t>, size_t> tid_nid_to_hist_;
|
|
};
|
|
|
|
/*!
|
|
* \brief builder for histograms of gradient statistics
|
|
*/
|
|
template<typename GradientSumT>
|
|
class GHistBuilder {
|
|
public:
|
|
using GHistRowT = GHistRow<GradientSumT>;
|
|
|
|
GHistBuilder() = default;
|
|
GHistBuilder(size_t nthread, uint32_t nbins) : nthread_{nthread}, nbins_{nbins} {}
|
|
|
|
// construct a histogram via histogram aggregation
|
|
void BuildHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexMatrix& gmat,
|
|
GHistRowT hist,
|
|
bool isDense);
|
|
// same, with feature grouping
|
|
void BuildBlockHist(const std::vector<GradientPair>& gpair,
|
|
const RowSetCollection::Elem row_indices,
|
|
const GHistIndexBlockMatrix& gmatb,
|
|
GHistRowT hist);
|
|
// construct a histogram via subtraction trick
|
|
void SubtractionTrick(GHistRowT self,
|
|
GHistRowT sibling,
|
|
GHistRowT parent);
|
|
|
|
uint32_t GetNumBins() const {
|
|
return nbins_;
|
|
}
|
|
|
|
private:
|
|
/*! \brief number of threads for parallel computation */
|
|
size_t nthread_ { 0 };
|
|
/*! \brief number of all bins over all features */
|
|
uint32_t nbins_ { 0 };
|
|
};
|
|
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_HIST_UTIL_H_
|