[CI] Use latest RAPIDS; Pandas 2.0 compatibility fix (#10175)
* [CI] Update RAPIDS to latest stable * [CI] Use rapidsai stable channel; fix syntax errors in Dockerfile.gpu * Don't combine astype() with loc() * Work around https://github.com/dmlc/xgboost/issues/10181 * Fix formatting * Fix test --------- Co-authored-by: hcho3 <hcho3@users.noreply.github.com> Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
This commit is contained in:
parent
6e5c335cea
commit
2925cebdca
@ -909,9 +909,19 @@ def _transform_cudf_df(
|
||||
enable_categorical: bool,
|
||||
) -> Tuple[ctypes.c_void_p, list, Optional[FeatureNames], Optional[FeatureTypes]]:
|
||||
try:
|
||||
from cudf.api.types import is_categorical_dtype
|
||||
from cudf.api.types import is_bool_dtype, is_categorical_dtype
|
||||
except ImportError:
|
||||
from cudf.utils.dtypes import is_categorical_dtype
|
||||
from pandas.api.types import is_bool_dtype
|
||||
|
||||
# Work around https://github.com/dmlc/xgboost/issues/10181
|
||||
if _is_cudf_ser(data):
|
||||
if is_bool_dtype(data.dtype):
|
||||
data = data.astype(np.uint8)
|
||||
else:
|
||||
data = data.astype(
|
||||
{col: np.uint8 for col in data.select_dtypes(include="bool")}
|
||||
)
|
||||
|
||||
if _is_cudf_ser(data):
|
||||
dtypes = [data.dtype]
|
||||
|
||||
@ -429,8 +429,8 @@ def make_categorical(
|
||||
categories = np.arange(0, n_categories)
|
||||
for col in df.columns:
|
||||
if rng.binomial(1, cat_ratio, size=1)[0] == 1:
|
||||
df.loc[:, col] = df[col].astype("category")
|
||||
df.loc[:, col] = df[col].cat.set_categories(categories)
|
||||
df[col] = df[col].astype("category")
|
||||
df[col] = df[col].cat.set_categories(categories)
|
||||
|
||||
if sparsity > 0.0:
|
||||
for i in range(n_features):
|
||||
|
||||
@ -24,7 +24,7 @@ set -x
|
||||
|
||||
CUDA_VERSION=11.8.0
|
||||
NCCL_VERSION=2.16.5-1
|
||||
RAPIDS_VERSION=24.02
|
||||
RAPIDS_VERSION=24.04
|
||||
SPARK_VERSION=3.4.0
|
||||
JDK_VERSION=8
|
||||
R_VERSION=4.3.2
|
||||
|
||||
@ -21,14 +21,14 @@ ENV PATH=/opt/mambaforge/bin:$PATH
|
||||
|
||||
# Create new Conda environment with cuDF, Dask, and cuPy
|
||||
RUN \
|
||||
conda install -c conda-forge mamba && \
|
||||
mamba create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \
|
||||
export NCCL_SHORT_VER=$(echo "$NCCL_VERSION_ARG" | cut -d "-" -f 1) && \
|
||||
mamba create -y -n gpu_test -c rapidsai -c nvidia -c conda-forge \
|
||||
python=3.10 cudf=$RAPIDS_VERSION_ARG* rmm=$RAPIDS_VERSION_ARG* cudatoolkit=$CUDA_VERSION_ARG \
|
||||
nccl>=$(cut -d "-" -f 1 << $NCCL_VERSION_ARG) \
|
||||
"nccl>=${NCCL_SHORT_VER}" \
|
||||
dask=2024.1.1 \
|
||||
dask-cuda=$RAPIDS_VERSION_ARG* dask-cudf=$RAPIDS_VERSION_ARG* cupy \
|
||||
numpy pytest pytest-timeout scipy scikit-learn pandas matplotlib wheel python-kubernetes urllib3 graphviz hypothesis \
|
||||
pyspark>=3.4.0 cloudpickle cuda-python && \
|
||||
"pyspark>=3.4.0" cloudpickle cuda-python && \
|
||||
mamba clean --all && \
|
||||
conda run --no-capture-output -n gpu_test pip install buildkite-test-collector
|
||||
|
||||
|
||||
@ -71,15 +71,6 @@ def _test_from_cudf(DMatrixT):
|
||||
assert dtrain.num_col() == 1
|
||||
assert dtrain.num_row() == 5
|
||||
|
||||
# Boolean is not supported.
|
||||
X_boolean = cudf.DataFrame({"x": cudf.Series([True, False])})
|
||||
with pytest.raises(Exception):
|
||||
dtrain = DMatrixT(X_boolean)
|
||||
|
||||
y_boolean = cudf.DataFrame({"x": cudf.Series([True, False, True, True, True])})
|
||||
with pytest.raises(Exception):
|
||||
dtrain = DMatrixT(X_boolean, label=y_boolean)
|
||||
|
||||
|
||||
def _test_cudf_training(DMatrixT):
|
||||
import pandas as pd
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user