Take gain into account to discover most important variables
This commit is contained in:
parent
dba1ce7050
commit
263f7fa69d
@ -8,29 +8,30 @@
|
||||
#' @importFrom data.table data.table
|
||||
#' @importFrom magrittr %>%
|
||||
#' @importFrom data.table :=
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix.
|
||||
#' @param filename_dump the name of the text file.
|
||||
#' @importFrom stringr str_extract
|
||||
#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}.
|
||||
#' @param filename_dump the path to the text file storing the model.
|
||||
#'
|
||||
#' @examples
|
||||
#' data(agaricus.train, package='xgboost')
|
||||
#' data(agaricus.test, package='xgboost')
|
||||
#'
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels (outcome column which will be learned).
|
||||
#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned).
|
||||
#' #Each column of the sparse Matrix is a feature in one hot encoding format.
|
||||
#' train <- agaricus.train
|
||||
#' test <- agaricus.test
|
||||
#'
|
||||
#' bst <- xgboost(data = train$data, label = train$label, max.depth = 2,
|
||||
#' eta = 1, nround = 2,objective = "binary:logistic")
|
||||
#' xgb.dump(bst, 'xgb.model.dump')
|
||||
#' xgb.dump(bst, 'xgb.model.dump', with.stats = T)
|
||||
#'
|
||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column name of the sparse matrix.
|
||||
#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix.
|
||||
#' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump')
|
||||
#'
|
||||
#' @export
|
||||
xgb.importance <- function(feature_names, filename_dump){
|
||||
if (class(feature_names) != "character") {
|
||||
stop("feature_names: Has to be a vector of character. See help to see where to get it.")
|
||||
xgb.importance <- function(feature_names = NULL, filename_dump = NULL){
|
||||
if (!class(feature_names) %in% c("character", "NULL")) {
|
||||
stop("feature_names: Has to be a vector of character or NULL if model dump already contain feature name. See help to see where to get it.")
|
||||
}
|
||||
if (class(filename_dump) != "character" & file.exists(filename_dump)) {
|
||||
stop("filename_dump: Has to be a path to the model dump file.")
|
||||
@ -45,16 +46,20 @@ xgb.importance <- function(feature_names, filename_dump){
|
||||
}
|
||||
|
||||
treeDump <- function(feature_names, text){
|
||||
result <- c()
|
||||
featureVec <- c()
|
||||
gainVec <- c()
|
||||
for(line in text){
|
||||
p <- regexec("\\[f.*\\]", line) %>% regmatches(line, .)
|
||||
if (length(p[[1]]) > 0) {
|
||||
splits <- sub("\\[f", "", p[[1]]) %>% sub("\\]", "", .) %>% strsplit("<") %>% .[[1]] %>% as.numeric
|
||||
result <- c(result, feature_names[splits[1]+ 1])
|
||||
p <- str_extract(line, "\\[f.*<")
|
||||
if (!is.na(p)) {
|
||||
featureVec <- substr(p, 3, nchar(p)-1) %>% c(featureVec)
|
||||
gainVec <- str_extract(line, "gain.*,") %>% substr(x = ., 6, nchar(.)-1) %>% as.numeric %>% c(gainVec)
|
||||
}
|
||||
}
|
||||
if(!is.null(feature_names)) {
|
||||
featureVec %<>% as.numeric %>% {c =.+1; feature_names[c]} #+1 because in R indexing start with 1 instead of 0.
|
||||
}
|
||||
#1. Reduce, 2. %, 3. reorder - bigger top, 4. remove temp col
|
||||
data.table(Feature = result)[,.N, by = Feature][, Weight:= N /sum(N)][order(-rank(Weight))][,-2,with=F]
|
||||
data.table(Feature = featureVec, Weight = gainVec)[,sum(Weight), by = Feature][, Weight:= V1 /sum(V1)][order(-rank(Weight))][,-2,with=F]
|
||||
}
|
||||
|
||||
linearDump <- function(feature_names, text){
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user