From 263f7fa69d362201cdf4eafd6ecdb4a7a8669ad0 Mon Sep 17 00:00:00 2001 From: El Potaeto Date: Mon, 29 Dec 2014 23:57:41 +0100 Subject: [PATCH] Take gain into account to discover most important variables --- R-package/R/xgb.importance.R | 39 ++++++++++++++++++++---------------- 1 file changed, 22 insertions(+), 17 deletions(-) diff --git a/R-package/R/xgb.importance.R b/R-package/R/xgb.importance.R index 3b99fbb00..51221b71b 100644 --- a/R-package/R/xgb.importance.R +++ b/R-package/R/xgb.importance.R @@ -8,34 +8,35 @@ #' @importFrom data.table data.table #' @importFrom magrittr %>% #' @importFrom data.table := -#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix. -#' @param filename_dump the name of the text file. +#' @importFrom stringr str_extract +#' @param feature_names names of each feature as a character vector. Can be extracted from a sparse matrix (see example). If model dump already contains feature names, this argument should be \code{NULL}. +#' @param filename_dump the path to the text file storing the model. #' #' @examples #' data(agaricus.train, package='xgboost') #' data(agaricus.test, package='xgboost') #' -#' #Both dataset are list with two items, a sparse matrix and labels (outcome column which will be learned). +#' #Both dataset are list with two items, a sparse matrix and labels (labels = outcome column which will be learned). #' #Each column of the sparse Matrix is a feature in one hot encoding format. #' train <- agaricus.train #' test <- agaricus.test #' #' bst <- xgboost(data = train$data, label = train$label, max.depth = 2, #' eta = 1, nround = 2,objective = "binary:logistic") -#' xgb.dump(bst, 'xgb.model.dump') +#' xgb.dump(bst, 'xgb.model.dump', with.stats = T) #' -#' #agaricus.test$data@@Dimnames[[2]] represents the column name of the sparse matrix. +#' #agaricus.test$data@@Dimnames[[2]] represents the column names of the sparse matrix. #' xgb.importance(agaricus.test$data@@Dimnames[[2]], 'xgb.model.dump') #' #' @export -xgb.importance <- function(feature_names, filename_dump){ - if (class(feature_names) != "character") { - stop("feature_names: Has to be a vector of character. See help to see where to get it.") +xgb.importance <- function(feature_names = NULL, filename_dump = NULL){ + if (!class(feature_names) %in% c("character", "NULL")) { + stop("feature_names: Has to be a vector of character or NULL if model dump already contain feature name. See help to see where to get it.") } - if (class(filename_dump) != "character" & file.exists(filename_dump)) { + if (class(filename_dump) != "character" & file.exists(filename_dump)) { stop("filename_dump: Has to be a path to the model dump file.") } - text <- readLines(filename_dump) + text <- readLines(filename_dump) if(text[2] == "bias:"){ result <- linearDump(feature_names, text) } else { @@ -44,17 +45,21 @@ xgb.importance <- function(feature_names, filename_dump){ result } -treeDump <- function(feature_names, text){ - result <- c() +treeDump <- function(feature_names, text){ + featureVec <- c() + gainVec <- c() for(line in text){ - p <- regexec("\\[f.*\\]", line) %>% regmatches(line, .) - if (length(p[[1]]) > 0) { - splits <- sub("\\[f", "", p[[1]]) %>% sub("\\]", "", .) %>% strsplit("<") %>% .[[1]] %>% as.numeric - result <- c(result, feature_names[splits[1]+ 1]) + p <- str_extract(line, "\\[f.*<") + if (!is.na(p)) { + featureVec <- substr(p, 3, nchar(p)-1) %>% c(featureVec) + gainVec <- str_extract(line, "gain.*,") %>% substr(x = ., 6, nchar(.)-1) %>% as.numeric %>% c(gainVec) } } + if(!is.null(feature_names)) { + featureVec %<>% as.numeric %>% {c =.+1; feature_names[c]} #+1 because in R indexing start with 1 instead of 0. + } #1. Reduce, 2. %, 3. reorder - bigger top, 4. remove temp col - data.table(Feature = result)[,.N, by = Feature][, Weight:= N /sum(N)][order(-rank(Weight))][,-2,with=F] + data.table(Feature = featureVec, Weight = gainVec)[,sum(Weight), by = Feature][, Weight:= V1 /sum(V1)][order(-rank(Weight))][,-2,with=F] } linearDump <- function(feature_names, text){