parent
55caad6e49
commit
246ec92163
@ -14,8 +14,15 @@ For more usage details please refer to the [binary classification demo](../binar
|
|||||||
|
|
||||||
Instructions
|
Instructions
|
||||||
====
|
====
|
||||||
The dataset for ranking demo is from LETOR04 MQ2008 fold1,
|
The dataset for ranking demo is from LETOR04 MQ2008 fold1.
|
||||||
You can use the following command to run the example
|
You can use the following command to run the example:
|
||||||
|
|
||||||
Get the data: ./wgetdata.sh
|
Get the data:
|
||||||
Run the example: ./runexp.sh
|
```
|
||||||
|
./wgetdata.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
Run the example:
|
||||||
|
```
|
||||||
|
./runexp.sh
|
||||||
|
```
|
||||||
|
|||||||
@ -1,4 +1,4 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
wget http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2008.rar
|
wget https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.rar
|
||||||
unrar x MQ2008.rar
|
unrar x MQ2008.rar
|
||||||
mv -f MQ2008/Fold1/*.txt .
|
mv -f MQ2008/Fold1/*.txt .
|
||||||
|
|||||||
@ -281,7 +281,7 @@ Specify the learning task and the corresponding learning objective. The objectiv
|
|||||||
- ``error``: Binary classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``. For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.
|
- ``error``: Binary classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``. For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.
|
||||||
- ``error@t``: a different than 0.5 binary classification threshold value could be specified by providing a numerical value through 't'.
|
- ``error@t``: a different than 0.5 binary classification threshold value could be specified by providing a numerical value through 't'.
|
||||||
- ``merror``: Multiclass classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``.
|
- ``merror``: Multiclass classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``.
|
||||||
- ``mlogloss``: `Multiclass logloss <https://www.kaggle.com/wiki/LogLoss>`_.
|
- ``mlogloss``: `Multiclass logloss <http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html>`_.
|
||||||
- ``auc``: `Area under the curve <http://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_curve>`_
|
- ``auc``: `Area under the curve <http://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_curve>`_
|
||||||
- ``ndcg``: `Normalized Discounted Cumulative Gain <http://en.wikipedia.org/wiki/NDCG>`_
|
- ``ndcg``: `Normalized Discounted Cumulative Gain <http://en.wikipedia.org/wiki/NDCG>`_
|
||||||
- ``map``: `Mean average precision <http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision>`_
|
- ``map``: `Mean average precision <http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision>`_
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user