From 246ec92163976c67c02ea716a08a603aba25c011 Mon Sep 17 00:00:00 2001 From: Philip Hyunsu Cho Date: Tue, 7 Aug 2018 05:27:39 -0700 Subject: [PATCH] Update broken links (#3565) Fix #3559 Fix #3562 --- demo/rank/README.md | 15 +++++++++++---- demo/rank/wgetdata.sh | 2 +- doc/parameter.rst | 2 +- 3 files changed, 13 insertions(+), 6 deletions(-) diff --git a/demo/rank/README.md b/demo/rank/README.md index 06cace675..55dcb4ee5 100644 --- a/demo/rank/README.md +++ b/demo/rank/README.md @@ -14,8 +14,15 @@ For more usage details please refer to the [binary classification demo](../binar Instructions ==== -The dataset for ranking demo is from LETOR04 MQ2008 fold1, -You can use the following command to run the example +The dataset for ranking demo is from LETOR04 MQ2008 fold1. +You can use the following command to run the example: -Get the data: ./wgetdata.sh -Run the example: ./runexp.sh +Get the data: +``` +./wgetdata.sh +``` + +Run the example: +``` +./runexp.sh +``` diff --git a/demo/rank/wgetdata.sh b/demo/rank/wgetdata.sh index 16f7a2e05..fa2193579 100755 --- a/demo/rank/wgetdata.sh +++ b/demo/rank/wgetdata.sh @@ -1,4 +1,4 @@ #!/bin/bash -wget http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2008.rar +wget https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.rar unrar x MQ2008.rar mv -f MQ2008/Fold1/*.txt . diff --git a/doc/parameter.rst b/doc/parameter.rst index d6ce40aed..6c1799768 100644 --- a/doc/parameter.rst +++ b/doc/parameter.rst @@ -281,7 +281,7 @@ Specify the learning task and the corresponding learning objective. The objectiv - ``error``: Binary classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``. For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances. - ``error@t``: a different than 0.5 binary classification threshold value could be specified by providing a numerical value through 't'. - ``merror``: Multiclass classification error rate. It is calculated as ``#(wrong cases)/#(all cases)``. - - ``mlogloss``: `Multiclass logloss `_. + - ``mlogloss``: `Multiclass logloss `_. - ``auc``: `Area under the curve `_ - ``ndcg``: `Normalized Discounted Cumulative Gain `_ - ``map``: `Mean average precision `_