Simplify Python getting started example (#8153)

Load data set via `sklearn` rather than a local file path.
This commit is contained in:
Ravi Makhija 2022-08-11 04:42:09 -04:00 committed by GitHub
parent d868126c39
commit 20d1bba1bb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -19,16 +19,18 @@ Python
.. code-block:: python
import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
# make prediction
preds = bst.predict(dtest)
from xgboost import XGBClassifier
# read data
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data['data'], data['target'], test_size=.2)
# create model instance
bst = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective='binary:logistic')
# fit model
bst.fit(X_train, y_train)
# make predictions
preds = bst.predict(X_test)
***
R