From 20d1bba1bb8b3aa0ba3762e99e21117b416a8567 Mon Sep 17 00:00:00 2001 From: Ravi Makhija <87270246+ravimakhija@users.noreply.github.com> Date: Thu, 11 Aug 2022 04:42:09 -0400 Subject: [PATCH] Simplify Python getting started example (#8153) Load data set via `sklearn` rather than a local file path. --- doc/get_started.rst | 22 ++++++++++++---------- 1 file changed, 12 insertions(+), 10 deletions(-) diff --git a/doc/get_started.rst b/doc/get_started.rst index 68508097a..69254777d 100644 --- a/doc/get_started.rst +++ b/doc/get_started.rst @@ -19,16 +19,18 @@ Python .. code-block:: python - import xgboost as xgb - # read in data - dtrain = xgb.DMatrix('demo/data/agaricus.txt.train') - dtest = xgb.DMatrix('demo/data/agaricus.txt.test') - # specify parameters via map - param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' } - num_round = 2 - bst = xgb.train(param, dtrain, num_round) - # make prediction - preds = bst.predict(dtest) + from xgboost import XGBClassifier + # read data + from sklearn.datasets import load_iris + from sklearn.model_selection import train_test_split + data = load_iris() + X_train, X_test, y_train, y_test = train_test_split(data['data'], data['target'], test_size=.2) + # create model instance + bst = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective='binary:logistic') + # fit model + bst.fit(X_train, y_train) + # make predictions + preds = bst.predict(X_test) *** R