Merge pull request #408 from ajkl/patch-10

restructuring the README with an index
This commit is contained in:
Tianqi Chen 2015-07-26 21:14:48 -07:00
commit 195f90159d

101
README.md
View File

@ -1,72 +1,77 @@
DMLC/XGBoost
==================================
=======
[![Build Status](https://travis-ci.org/dmlc/xgboost.svg?branch=master)](https://travis-ci.org/dmlc/xgboost) [![Gitter chat for developers at https://gitter.im/dmlc/xgboost](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/dmlc/xgboost?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version.
An optimized general purpose gradient boosting library. The library is parallelized, and also provides an optimized distributed version.
It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework, including [Generalized Linear Model](https://en.wikipedia.org/wiki/Generalized_linear_model) (GLM) and [Gradient Boosted Decision Trees](https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting) (GBDT). XGBoost can also be [distributed](#features) and scale to Terascale data
Check out our [Committers and Contributors](CONTRIBUTORS.md) who help make xgboost better.
Documentation: [Documentation of dmlc/xgboost](doc/README.md)
Issue Tracker: [https://github.com/dmlc/xgboost/issues](https://github.com/dmlc/xgboost/issues?q=is%3Aissue+label%3Aquestion)
Please join [XGBoost User Group](https://groups.google.com/forum/#!forum/xgboost-user/) to ask questions and share your experience on xgboost.
- Use issue tracker for bug reports, feature requests etc.
- Use the user group to post your experience, ask questions about general usages.
Distributed Version: [Distributed XGBoost](multi-node)
Highlights of Usecases: [Highlight Links](doc/README.md#highlight-links)
XGBoost is part of [Distributed Machine Learning Common](http://dmlc.github.io/) projects
Contents
--------
* [What's New](#whats-new)
* [Version](#version)
* [Documentation](doc/README.md)
* [Build Instruction](doc/build.md)
* [Features](#features)
* [Distributed XGBoost](multi-node)
* [Usecases](doc/README.md#highlight-links)
* [Bug Reporting](#bug-reporting)
* [Contributing to XGBoost](#contributing-to-xgboost)
* [Committers and Contributors](CONTRIBUTORS.md)
* [License](#license)
* [XGBoost in Graphlab Create](#xgboost-in-graphlab-create)
What's New
==========
----------
* XGBoost helps Chenglong Chen to win [Kaggle CrowdFlower Competition](https://www.kaggle.com/c/crowdflower-search-relevance)
- Check out the winning solution at [Highlight links](doc/README.md#highlight-links)
Check out the [winning solution](doc/README.md#highlight-links)
* XGBoost-0.4 release, see [CHANGES.md](CHANGES.md#xgboost-04)
* XGBoost helps three champion teams to win [WWW2015 Microsoft Malware Classification Challenge (BIG 2015)](http://www.kaggle.com/c/malware-classification/forums/t/13490/say-no-to-overfitting-approaches-sharing)
- Check out the winning solution at [Highlight links](doc/README.md#highlight-links)
Check out the [winning solution](doc/README.md#highlight-links)
* [External Memory Version](doc/external_memory.md)
Version
-------
* Current version xgboost-0.4
- [Change log](CHANGES.md)
- This version is compatible with 0.3x versions
Features
--------
* Easily accessible through CLI, [python](guide-python/basic_walkthrough.py),
[R](../R-package/demo/basic_walkthrough.R),
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/basic_walkthrough.jl)
* Its fast! Benchmark numbers comparing xgboost, H20, Spark, R - [benchm-ml numbers](https://github.com/szilard/benchm-ml)
* Memory efficient - Handles sparse matrices, supports external memory
* Accurate prediction, and used extensively by data scientists and kagglers - [highlight links](https://github.com/dmlc/xgboost/blob/master/doc/README.md#highlight-links)
* Distributed version runs on Hadoop (YARN), MPI, SGE etc., scales to billions of examples.
Bug Reporting
-------------
* For reporting bugs please use the [xgboost/issues](https://github.com/dmlc/xgboost/issues) page.
* For generic questions or to share your experience using xgboost please use the [XGBoost User Group](https://groups.google.com/forum/#!forum/xgboost-user/)
Contributing to XGBoost
=========
-----------------------
XGBoost has been developed and used by a group of active community members. Everyone is more than welcome to contribute. It is a way to make the project better and more accessible to more users.
* Check out [Feature Wish List](https://github.com/dmlc/xgboost/labels/Wish-List) to see what can be improved, or open an issue if you want something.
* Contribute to the [documents and examples](https://github.com/dmlc/xgboost/blob/master/doc/) to share your experience with other users.
* Please add your name to [CONTRIBUTORS.md](CONTRIBUTORS.md) after your patch has been merged.
Features
========
* Easily accessible in python, R, Julia, CLI
* Fast speed and memory efficient
- Can be more than 10 times faster than GBM in sklearn and R
- Handles sparse matrices, support external memory
* Accurate prediction, and used extensively by data scientists and kagglers
- See [highlight links](https://github.com/dmlc/xgboost/blob/master/doc/README.md#highlight-links)
* Distributed and Portable
- The distributed version runs on Hadoop (YARN), MPI, SGE etc.
- Scales to billions of examples and beyond
Build
=======
* Run ```bash build.sh``` (you can also type make)
- Normally it gives what you want
- See [Build Instruction](doc/build.md) for more information
Version
=======
* Current version xgboost-0.4, a lot improvment has been made since 0.3
- Change log in [CHANGES.md](CHANGES.md)
- This version is compatible with 0.3x versions
License
=======
-------
© Contributors, 2015. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license.
XGBoost in Graphlab Create
==========================
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to do data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the Graphlab Create in http://graphlab.com/products/create/quick-start-guide.html
* Nice blogpost by Jay Gu about using GLC boosted tree to solve kaggle bike sharing challenge: http://blog.graphlab.com/using-gradient-boosted-trees-to-predict-bike-sharing-demand
--------------------------
* XGBoost is adopted as part of boosted tree toolkit in Graphlab Create (GLC). Graphlab Create is a powerful python toolkit that allows you to do data manipulation, graph processing, hyper-parameter search, and visualization of TeraBytes scale data in one framework. Try the [Graphlab Create](http://graphlab.com/products/create/quick-start-guide.html)
* Nice [blogpost](http://blog.graphlab.com/using-gradient-boosted-trees-to-predict-bike-sharing-demand) by Jay Gu about using GLC boosted tree to solve kaggle bike sharing challenge: