[jvm-packages] use ML's para system to build the passed-in params to XGBoost (#2043)

* add back train method but mark as deprecated

* fix scalastyle error

* use ML's para system to build the passed-in params to XGBoost

* clean
This commit is contained in:
Nan Zhu 2017-02-18 11:56:27 -08:00 committed by GitHub
parent acce11d3f4
commit 185fe1d645
3 changed files with 19 additions and 31 deletions

View File

@ -32,7 +32,7 @@ import org.apache.spark.sql.{Dataset, Row}
* XGBoost Estimator to produce a XGBoost model
*/
class XGBoostEstimator private[spark](
override val uid: String, private[spark] var xgboostParams: Map[String, Any])
override val uid: String, xgboostParams: Map[String, Any])
extends Predictor[MLVector, XGBoostEstimator, XGBoostModel]
with LearningTaskParams with GeneralParams with BoosterParams {
@ -41,7 +41,6 @@ class XGBoostEstimator private[spark](
def this(uid: String) = this(uid, Map[String, Any]())
// called in fromXGBParamMapToParams only when eval_metric is not defined
private def setupDefaultEvalMetric(): String = {
val objFunc = xgboostParams.getOrElse("objective", xgboostParams.getOrElse("obj_type", null))
@ -93,16 +92,11 @@ class XGBoostEstimator private[spark](
fromXGBParamMapToParams()
// only called when XGBParamMap is empty, i.e. in the constructor this(String)
// TODO: refactor to be functional
private def fromParamsToXGBParamMap(): Map[String, Any] = {
require(xgboostParams.isEmpty, "fromParamsToXGBParamMap can only be called when" +
" XGBParamMap is empty, i.e. in the constructor this(String)")
private[spark] def fromParamsToXGBParamMap: Map[String, Any] = {
val xgbParamMap = new mutable.HashMap[String, Any]()
for (param <- params) {
xgbParamMap += param.name -> $(param)
}
xgboostParams = xgbParamMap.toMap
xgbParamMap.toMap
}
@ -116,8 +110,9 @@ class XGBoostEstimator private[spark](
LabeledPoint(label, feature)
}
transformSchema(trainingSet.schema, logging = true)
val trainedModel = XGBoost.trainWithRDD(instances, xgboostParams, $(round), $(nWorkers),
$(customObj), $(customEval), $(useExternalMemory), $(missing)).setParent(this)
val trainedModel = XGBoost.trainWithRDD(instances, fromParamsToXGBParamMap,
$(round), $(nWorkers), $(customObj), $(customEval), $(useExternalMemory),
$(missing)).setParent(this)
val returnedModel = copyValues(trainedModel)
if (XGBoost.isClassificationTask(xgboostParams)) {
val numClass = {
@ -133,11 +128,6 @@ class XGBoostEstimator private[spark](
}
override def copy(extra: ParamMap): XGBoostEstimator = {
val est = defaultCopy(extra).asInstanceOf[XGBoostEstimator]
// we need to synchronize the params here instead of in the constructor
// because we cannot guarantee that params (default implementation) is initialized fully
// before the other params
est.fromParamsToXGBParamMap()
est
defaultCopy(extra).asInstanceOf[XGBoostEstimator]
}
}

View File

@ -196,7 +196,7 @@ trait BoosterParams extends Params {
minChildWeight -> 1, maxDeltaStep -> 0,
subSample -> 1, colSampleByTree -> 1, colSampleByLevel -> 1,
lambda -> 1, alpha -> 0, treeMethod -> "auto", sketchEps -> 0.03,
scalePosWeight -> 1, sampleType -> "uniform", normalizeType -> "tree",
scalePosWeight -> 1.0, sampleType -> "uniform", normalizeType -> "tree",
rateDrop -> 0.0, skipDrop -> 0.0, lambdaBias -> 0)
/**

View File

@ -18,10 +18,13 @@ package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix}
import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
import org.apache.spark.SparkContext
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.DenseVector
import org.apache.spark.ml.param.ParamMap
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}
import org.apache.spark.sql._
class XGBoostDFSuite extends SharedSparkContext with Utils {
@ -47,23 +50,21 @@ class XGBoostDFSuite extends SharedSparkContext with Utils {
val (testItr, auxTestItr) =
loadLabelPoints(getClass.getResource("/agaricus.txt.test").getFile).iterator.duplicate
import DataUtils._
val round = 5
val trainDMatrix = new DMatrix(new JDMatrix(trainingItr, null))
val testDMatrix = new DMatrix(new JDMatrix(testItr, null))
val xgboostModel = ScalaXGBoost.train(trainDMatrix, paramMap, 5)
val xgboostModel = ScalaXGBoost.train(trainDMatrix, paramMap, round)
val predResultFromSeq = xgboostModel.predict(testDMatrix)
val testSetItr = auxTestItr.zipWithIndex.map {
case (instance: LabeledPoint, id: Int) =>
(id, instance.features, instance.label)
case (instance: LabeledPoint, id: Int) => (id, instance.features, instance.label)
}
val trainingDF = buildTrainingDataframe()
val xgBoostModelWithDF = XGBoost.trainWithDataFrame(trainingDF, paramMap,
round = 5, nWorkers = numWorkers, useExternalMemory = false)
round = round, nWorkers = numWorkers, useExternalMemory = false)
val testDF = trainingDF.sparkSession.createDataFrame(testSetItr.toList).toDF(
"id", "features", "label")
val predResultsFromDF = xgBoostModelWithDF.setExternalMemory(true).transform(testDF).
collect().map(row =>
(row.getAs[Int]("id"), row.getAs[DenseVector]("probabilities"))
).toMap
collect().map(row => (row.getAs[Int]("id"), row.getAs[DenseVector]("probabilities"))).toMap
assert(testDF.count() === predResultsFromDF.size)
// the vector length in probabilties column is 2 since we have to fit to the evaluator in
// Spark
@ -169,8 +170,8 @@ class XGBoostDFSuite extends SharedSparkContext with Utils {
assert(xgbEstimator.get(xgbEstimator.objective).get === "binary:logistic")
// from spark to xgboost params
val xgbEstimatorCopy = xgbEstimator.copy(ParamMap.empty)
assert(xgbEstimatorCopy.xgboostParams.get("eta").get.toString.toDouble === 1.0)
assert(xgbEstimatorCopy.xgboostParams.get("objective").get.toString === "binary:logistic")
assert(xgbEstimatorCopy.fromParamsToXGBParamMap("eta").toString.toDouble === 1.0)
assert(xgbEstimatorCopy.fromParamsToXGBParamMap("objective").toString === "binary:logistic")
}
test("eval_metric is configured correctly") {
@ -179,11 +180,8 @@ class XGBoostDFSuite extends SharedSparkContext with Utils {
assert(xgbEstimator.get(xgbEstimator.evalMetric).get === "error")
val sparkParamMap = ParamMap.empty
val xgbEstimatorCopy = xgbEstimator.copy(sparkParamMap)
assert(xgbEstimatorCopy.xgboostParams.get("eval_metric") === Some("error"))
assert(xgbEstimatorCopy.fromParamsToXGBParamMap("eval_metric") === "error")
val xgbEstimatorCopy1 = xgbEstimator.copy(sparkParamMap.put(xgbEstimator.evalMetric, "logloss"))
assert(xgbEstimatorCopy1.xgboostParams.get("eval_metric") === Some("logloss"))
assert(xgbEstimatorCopy1.fromParamsToXGBParamMap("eval_metric") === "logloss")
}
}