Adding ranking task
This commit is contained in:
parent
dc239376c7
commit
0b1e584d73
430
rank/xgboost_rank.h
Normal file
430
rank/xgboost_rank.h
Normal file
@ -0,0 +1,430 @@
|
||||
#ifndef XGBOOST_RANK_H
|
||||
#define XGBOOST_RANK_H
|
||||
/*!
|
||||
* \file xgboost_rank.h
|
||||
* \brief class for gradient boosting ranking
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include "xgboost_sample.h"
|
||||
#include "xgboost_rank_data.h"
|
||||
#include "xgboost_rank_eval.h"
|
||||
#include "../utils/xgboost_omp.h"
|
||||
#include "../booster/xgboost_gbmbase.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*! \brief class for gradient boosted regression */
|
||||
class RankBoostLearner {
|
||||
public:
|
||||
/*! \brief constructor */
|
||||
RegBoostLearner( void ) {
|
||||
silent = 0;
|
||||
}
|
||||
/*!
|
||||
* \brief a rank booster associated with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
RankBoostLearner( const RMatrix *train,
|
||||
const std::vector<RMatrix *> &evals,
|
||||
const std::vector<std::string> &evname ) {
|
||||
silent = 0;
|
||||
this->SetData(train,evals,evname);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief associate rank booster with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
inline void SetData( const RMatrix *train,
|
||||
const std::vector<RMatrix *> &evals,
|
||||
const std::vector<std::string> &evname ) {
|
||||
this->train_ = train;
|
||||
this->evals_ = evals;
|
||||
this->evname_ = evname;
|
||||
// estimate feature bound
|
||||
int num_feature = (int)(train->data.NumCol());
|
||||
// assign buffer index
|
||||
unsigned buffer_size = static_cast<unsigned>( train->Size() );
|
||||
|
||||
for( size_t i = 0; i < evals.size(); ++ i ) {
|
||||
buffer_size += static_cast<unsigned>( evals[i]->Size() );
|
||||
num_feature = std::max( num_feature, (int)(evals[i]->data.NumCol()) );
|
||||
}
|
||||
|
||||
char str_temp[25];
|
||||
if( num_feature > mparam.num_feature ) {
|
||||
mparam.num_feature = num_feature;
|
||||
sprintf( str_temp, "%d", num_feature );
|
||||
base_gbm.SetParam( "bst:num_feature", str_temp );
|
||||
}
|
||||
|
||||
sprintf( str_temp, "%u", buffer_size );
|
||||
base_gbm.SetParam( "num_pbuffer", str_temp );
|
||||
if( !silent ) {
|
||||
printf( "buffer_size=%u\n", buffer_size );
|
||||
}
|
||||
|
||||
// set eval_preds tmp sapce
|
||||
this->eval_preds_.resize( evals.size(), std::vector<float>() );
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam( const char *name, const char *val ) {
|
||||
if( !strcmp( name, "silent") ) silent = atoi( val );
|
||||
if( !strcmp( name, "eval_metric") ) evaluator_.AddEval( val );
|
||||
mparam.SetParam( name, val );
|
||||
base_gbm.SetParam( name, val );
|
||||
}
|
||||
/*!
|
||||
* \brief initialize solver before training, called before training
|
||||
* this function is reserved for solver to allocate necessary space and do other preparation
|
||||
*/
|
||||
inline void InitTrainer( void ) {
|
||||
base_gbm.InitTrainer();
|
||||
if( mparam.loss_type == PAIRWISE) {
|
||||
evaluator_.AddEval( "pairwise" );
|
||||
} else if( mparam.loss_type == MAP) {
|
||||
evaluator_.AddEval( "MAP" );
|
||||
} else {
|
||||
evaluator_.AddEval( "NDCG" );
|
||||
}
|
||||
evaluator_.Init();
|
||||
}
|
||||
/*!
|
||||
* \brief initialize the current data storage for model, if the model is used first time, call this function
|
||||
*/
|
||||
inline void InitModel( void ) {
|
||||
base_gbm.InitModel();
|
||||
mparam.AdjustBase();
|
||||
}
|
||||
/*!
|
||||
* \brief load model from stream
|
||||
* \param fi input stream
|
||||
*/
|
||||
inline void LoadModel( utils::IStream &fi ) {
|
||||
base_gbm.LoadModel( fi );
|
||||
utils::Assert( fi.Read( &mparam, sizeof(ModelParam) ) != 0 );
|
||||
}
|
||||
/*!
|
||||
* \brief DumpModel
|
||||
* \param fo text file
|
||||
* \param fmap feature map that may help give interpretations of feature
|
||||
* \param with_stats whether print statistics as well
|
||||
*/
|
||||
inline void DumpModel( FILE *fo, const utils::FeatMap& fmap, bool with_stats ) {
|
||||
base_gbm.DumpModel( fo, fmap, with_stats );
|
||||
}
|
||||
/*!
|
||||
* \brief Dump path of all trees
|
||||
* \param fo text file
|
||||
* \param data input data
|
||||
*/
|
||||
inline void DumpPath( FILE *fo, const RMatrix &data ) {
|
||||
base_gbm.DumpPath( fo, data.data );
|
||||
}
|
||||
/*!
|
||||
* \brief save model to stream
|
||||
* \param fo output stream
|
||||
*/
|
||||
inline void SaveModel( utils::IStream &fo ) const {
|
||||
base_gbm.SaveModel( fo );
|
||||
fo.Write( &mparam, sizeof(ModelParam) );
|
||||
}
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration iteration number
|
||||
*/
|
||||
inline void UpdateOneIter( int iter ) {
|
||||
this->PredictBuffer( preds_, *train_, 0 );
|
||||
this->GetGradient( preds_, train_->labels,train_->group_index, grad_, hess_ );
|
||||
std::vector<unsigned> root_index;
|
||||
base_gbm.DoBoost( grad_, hess_, train_->data, root_index );
|
||||
}
|
||||
/*!
|
||||
* \brief evaluate the model for specific iteration
|
||||
* \param iter iteration number
|
||||
* \param fo file to output log
|
||||
*/
|
||||
inline void EvalOneIter( int iter, FILE *fo = stderr ) {
|
||||
fprintf( fo, "[%d]", iter );
|
||||
int buffer_offset = static_cast<int>( train_->Size() );
|
||||
|
||||
for( size_t i = 0; i < evals_.size(); ++i ) {
|
||||
std::vector<float> &preds = this->eval_preds_[ i ];
|
||||
this->PredictBuffer( preds, *evals_[i], buffer_offset);
|
||||
evaluator_.Eval( fo, evname_[i].c_str(), preds, (*evals_[i]).labels );
|
||||
buffer_offset += static_cast<int>( evals_[i]->Size() );
|
||||
}
|
||||
fprintf( fo,"\n" );
|
||||
}
|
||||
|
||||
/*! \brief get intransformed prediction, without buffering */
|
||||
inline void Predict( std::vector<float> &preds, const DMatrix &data ) {
|
||||
preds.resize( data.Size() );
|
||||
|
||||
const unsigned ndata = static_cast<unsigned>( data.Size() );
|
||||
#pragma omp parallel for schedule( static )
|
||||
for( unsigned j = 0; j < ndata; ++ j ) {
|
||||
preds[j] = mparam.base_score + base_gbm.Predict( data.data, j, -1 );
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration iteration number
|
||||
*/
|
||||
inline void UpdateInteract( std::string action ) {
|
||||
this->InteractPredict( preds_, *train_, 0 );
|
||||
|
||||
int buffer_offset = static_cast<int>( train_->Size() );
|
||||
for( size_t i = 0; i < evals_.size(); ++i ) {
|
||||
std::vector<float> &preds = this->eval_preds_[ i ];
|
||||
this->InteractPredict( preds, *evals_[i], buffer_offset );
|
||||
buffer_offset += static_cast<int>( evals_[i]->Size() );
|
||||
}
|
||||
|
||||
if( action == "remove" ) {
|
||||
base_gbm.DelteBooster();
|
||||
return;
|
||||
}
|
||||
|
||||
this->GetGradient( preds_, train_->labels, grad_, hess_ );
|
||||
std::vector<unsigned> root_index;
|
||||
base_gbm.DoBoost( grad_, hess_, train_->data, root_index );
|
||||
|
||||
this->InteractRePredict( *train_, 0 );
|
||||
buffer_offset = static_cast<int>( train_->Size() );
|
||||
for( size_t i = 0; i < evals_.size(); ++i ) {
|
||||
this->InteractRePredict( *evals_[i], buffer_offset );
|
||||
buffer_offset += static_cast<int>( evals_[i]->Size() );
|
||||
}
|
||||
}
|
||||
private:
|
||||
/*! \brief get the transformed predictions, given data */
|
||||
inline void InteractPredict( std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset ) {
|
||||
preds.resize( data.Size() );
|
||||
const unsigned ndata = static_cast<unsigned>( data.Size() );
|
||||
#pragma omp parallel for schedule( static )
|
||||
for( unsigned j = 0; j < ndata; ++ j ) {
|
||||
preds[j] = mparam.base_score + base_gbm.InteractPredict( data.data, j, buffer_offset + j );
|
||||
}
|
||||
}
|
||||
/*! \brief repredict trial */
|
||||
inline void InteractRePredict( const DMatrix &data, unsigned buffer_offset ) {
|
||||
const unsigned ndata = static_cast<unsigned>( data.Size() );
|
||||
#pragma omp parallel for schedule( static )
|
||||
for( unsigned j = 0; j < ndata; ++ j ) {
|
||||
base_gbm.InteractRePredict( data.data, j, buffer_offset + j );
|
||||
}
|
||||
}
|
||||
private:
|
||||
/*! \brief get intransformed predictions, given data */
|
||||
inline void PredictBuffer( std::vector<float> &preds, const RMatrix &data, unsigned buffer_offset ) {
|
||||
preds.resize( data.Size() );
|
||||
|
||||
const unsigned ndata = static_cast<unsigned>( data.Size() );
|
||||
#pragma omp parallel for schedule( static )
|
||||
for( unsigned j = 0; j < ndata; ++ j ) {
|
||||
preds[j] = mparam.base_score + base_gbm.Predict( data.data, j, buffer_offset + j );
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/*! \brief get the first order and second order gradient, given the transformed predictions and labels */
|
||||
inline void GetGradient( const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess ) {
|
||||
grad.resize( preds.size() );
|
||||
hess.resize( preds.size() );
|
||||
bool j_better;
|
||||
float pred_diff,pred_diff_exp,first_order_gradient,second_order_gradient;
|
||||
for(int i = 0; i < group_index.size() - 1; i++){
|
||||
xgboost::rank::sample::PairSamplerSet sampler;
|
||||
xgboost::rank::sample::Pairs pairs = sampler.GenPairs(preds,labels,group_index[i],group_index[i+1]);
|
||||
for(int j = group_index[i]; j < group_index[i+1]; j++){
|
||||
std::vector<int> pair_instance = pairs.GetPairs(j);
|
||||
j_better = labels[j] > labels[pair_instance[k]];
|
||||
if(j_better){
|
||||
for(int k = 0; k < pair_instance.size(); k++){
|
||||
pred_diff = preds[preds[j] - pair_instance[k]];
|
||||
pred_diff_exp = j_better? expf(-pred_diff):expf(pred_diff);
|
||||
first_order_gradient = mparam.FirstOrderGradient(pred_diff_exp);
|
||||
second_order_gradient = 2 * mparam.SecondOrderGradient(pred_diff_exp);
|
||||
hess[j] += second_order_gradient;
|
||||
grad[j] += first_order_gradient;
|
||||
hess[pair_instance[k]] += second_order_gradient;
|
||||
grad[pair_instance[k]] += -first_order_gradient;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
enum LossType {
|
||||
PAIRWISE = 0,
|
||||
MAP = 1,
|
||||
NDCG = 2
|
||||
};
|
||||
|
||||
/*! \brief training parameter for regression */
|
||||
struct ModelParam {
|
||||
/* \brief global bias */
|
||||
float base_score;
|
||||
/* \brief type of loss function */
|
||||
int loss_type;
|
||||
/* \brief number of features */
|
||||
int num_feature;
|
||||
/*! \brief reserved field */
|
||||
int reserved[ 16 ];
|
||||
/*! \brief constructor */
|
||||
ModelParam( void ) {
|
||||
base_score = 0.5f;
|
||||
loss_type = 0;
|
||||
num_feature = 0;
|
||||
memset( reserved, 0, sizeof( reserved ) );
|
||||
}
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
* \param val value of the parameter
|
||||
*/
|
||||
inline void SetParam( const char *name, const char *val ) {
|
||||
if( !strcmp("base_score", name ) ) base_score = (float)atof( val );
|
||||
if( !strcmp("loss_type", name ) ) loss_type = atoi( val );
|
||||
if( !strcmp("bst:num_feature", name ) ) num_feature = atoi( val );
|
||||
}
|
||||
/*!
|
||||
* \brief adjust base_score
|
||||
*/
|
||||
inline void AdjustBase( void ) {
|
||||
if( loss_type == 1 || loss_type == 2 ) {
|
||||
utils::Assert( base_score > 0.0f && base_score < 1.0f, "sigmoid range constrain" );
|
||||
base_score = - logf( 1.0f / base_score - 1.0f );
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief transform the linear sum to prediction
|
||||
* \param x linear sum of boosting ensemble
|
||||
* \return transformed prediction
|
||||
*/
|
||||
inline float PredTransform( float x ) {
|
||||
switch( loss_type ) {
|
||||
case PAIRWISE:
|
||||
case MAP:
|
||||
case NDCG:
|
||||
return 1.0f/(1.0f + expf(-x));
|
||||
default:
|
||||
utils::Error("unknown loss_type");
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculate first order gradient of pairwise loss function(f(x) = ln(1+exp(-x)),
|
||||
* given the exponential of the difference of intransformed pair predictions
|
||||
* \param the intransformed prediction of positive instance
|
||||
* \param the intransformed prediction of negative instance
|
||||
* \return first order gradient
|
||||
*/
|
||||
inline float FirstOrderGradient( float pred_diff_exp) const {
|
||||
return -pred_diff_exp/(1 + pred_diff_exp);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculate second order gradient of pairwise loss function(f(x) = ln(1+exp(-x)),
|
||||
* given the exponential of the difference of intransformed pair predictions
|
||||
* \param the intransformed prediction of positive instance
|
||||
* \param the intransformed prediction of negative instance
|
||||
* \return second order gradient
|
||||
*/
|
||||
inline float SecondOrderGradient( float pred_diff_exp ) const {
|
||||
return pred_diff_exp/pow(1 + pred_diff_exp,2);
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculating the loss, given the predictions, labels and the loss type
|
||||
* \param preds the given predictions
|
||||
* \param labels the given labels
|
||||
* \return the specified loss
|
||||
*/
|
||||
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const {
|
||||
switch( loss_type ) {
|
||||
case kLinearSquare:
|
||||
return SquareLoss(preds,labels);
|
||||
case kLogisticNeglik:
|
||||
case kLogisticClassify:
|
||||
return NegLoglikelihoodLoss(preds,labels);
|
||||
default:
|
||||
utils::Error("unknown loss_type");
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculating the square loss, given the predictions and labels
|
||||
* \param preds the given predictions
|
||||
* \param labels the given labels
|
||||
* \return the summation of square loss
|
||||
*/
|
||||
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const {
|
||||
float ans = 0.0;
|
||||
for(size_t i = 0; i < preds.size(); i++) {
|
||||
float dif = preds[i] - labels[i];
|
||||
ans += dif * dif;
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculating the square loss, given the predictions and labels
|
||||
* \param preds the given predictions
|
||||
* \param labels the given labels
|
||||
* \return the summation of square loss
|
||||
*/
|
||||
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const {
|
||||
float ans = 0.0;
|
||||
for(size_t i = 0; i < preds.size(); i++)
|
||||
ans -= labels[i] * logf(preds[i]) + ( 1 - labels[i] ) * logf(1 - preds[i]);
|
||||
return ans;
|
||||
}
|
||||
};
|
||||
private:
|
||||
int silent;
|
||||
RankEvalSet evaluator_;
|
||||
booster::GBMBase base_gbm;
|
||||
ModelParam mparam;
|
||||
const RMatrix *train_;
|
||||
std::vector<RMatrix *> evals_;
|
||||
std::vector<std::string> evname_;
|
||||
std::vector<unsigned> buffer_index_;
|
||||
private:
|
||||
std::vector<float> grad_, hess_, preds_;
|
||||
std::vector< std::vector<float> > eval_preds_;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
179
rank/xgboost_rank_data.h
Normal file
179
rank/xgboost_rank_data.h
Normal file
@ -0,0 +1,179 @@
|
||||
#ifndef XGBOOST_RANK_DATA_H
|
||||
#define XGBOOST_RANK_DATA_H
|
||||
|
||||
/*!
|
||||
* \file xgboost_rank_data.h
|
||||
* \brief input data structure for rank task.
|
||||
* Format:
|
||||
* The data should contains groups of rank data, a group here may refer to
|
||||
* the rank list of a query, or the browsing history of a user, etc.
|
||||
* Each group first contains the size of the group in a single line,
|
||||
* then following is the line data with the same format with the regression data:
|
||||
* label <nonzero feature dimension> [feature index:feature value]+
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include "../booster/xgboost_data.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*! \brief data matrix for regression content */
|
||||
struct RMatrix {
|
||||
public:
|
||||
/*! \brief maximum feature dimension */
|
||||
unsigned num_feature;
|
||||
/*! \brief feature data content */
|
||||
booster::FMatrixS data;
|
||||
/*! \brief label of each instance */
|
||||
std::vector<float> labels;
|
||||
/*! \brief The index of begin and end of each group */
|
||||
std::vector<int> group_index;
|
||||
public:
|
||||
/*! \brief default constructor */
|
||||
RMatrix( void ) {}
|
||||
|
||||
/*! \brief get the number of instances */
|
||||
inline size_t Size() const {
|
||||
return labels.size();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief load from text file
|
||||
* \param fname name of text data
|
||||
* \param silent whether print information or not
|
||||
*/
|
||||
inline void LoadText( const char* fname, bool silent = false ) {
|
||||
data.Clear();
|
||||
FILE* file = utils::FopenCheck( fname, "r" );
|
||||
float label;
|
||||
bool init = true;
|
||||
char tmp[ 1024 ];
|
||||
int group_size,group_size_acc = 0;
|
||||
std::vector<booster::bst_uint> findex;
|
||||
std::vector<booster::bst_float> fvalue;
|
||||
group_index.push_back(0);
|
||||
while(fscanf(file, "%d",group_size) == 1) {
|
||||
group_size_acc += group_size;
|
||||
group_index.push_back(group_size_acc);
|
||||
unsigned index;
|
||||
float value;
|
||||
if( sscanf( tmp, "%u:%f", &index, &value ) == 2 ) {
|
||||
findex.push_back( index );
|
||||
fvalue.push_back( value );
|
||||
} else {
|
||||
if( !init ) {
|
||||
labels.push_back( label );
|
||||
data.AddRow( findex, fvalue );
|
||||
}
|
||||
findex.clear();
|
||||
fvalue.clear();
|
||||
utils::Assert( sscanf( tmp, "%f", &label ) == 1, "invalid format" );
|
||||
init = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
labels.push_back( label );
|
||||
data.AddRow( findex, fvalue );
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
if( !silent ) {
|
||||
printf("%ux%u matrix with %lu entries is loaded from %s\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname );
|
||||
}
|
||||
fclose(file);
|
||||
}
|
||||
/*!
|
||||
* \brief load from binary file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
* \return whether loading is success
|
||||
*/
|
||||
inline bool LoadBinary( const char* fname, bool silent = false ) {
|
||||
FILE *fp = fopen64( fname, "rb" );
|
||||
int group_index_size = 0;
|
||||
if( fp == NULL ) return false;
|
||||
utils::FileStream fs( fp );
|
||||
data.LoadBinary( fs );
|
||||
labels.resize( data.NumRow() );
|
||||
utils::Assert( fs.Read( &labels[0], sizeof(float) * data.NumRow() ) != 0, "DMatrix LoadBinary" );
|
||||
|
||||
utils::Assert( fs.Read( &group_index_size, sizeof(int) ) != 0, "Load group indice size" );
|
||||
group_index.resize(group_index_size);
|
||||
utils::Assert( fs.Read( &group_index, sizeof(int) * group_index_size) != 0, "Load group indice" d);
|
||||
|
||||
fs.Close();
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
if( !silent ) {
|
||||
printf("%ux%u matrix with %lu entries is loaded from %s\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname );
|
||||
}
|
||||
return true;
|
||||
}
|
||||
/*!
|
||||
* \brief save to binary file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
*/
|
||||
inline void SaveBinary( const char* fname, bool silent = false ) {
|
||||
// initialize column support as well
|
||||
data.InitData();
|
||||
|
||||
utils::FileStream fs( utils::FopenCheck( fname, "wb" ) );
|
||||
data.SaveBinary( fs );
|
||||
fs.Write( &labels[0], sizeof(float) * data.NumRow() );
|
||||
|
||||
fs.Write( &(group_index.size()), sizeof(int));
|
||||
fs.Write( &group_index[0], sizeof(int) * group_index.size() );
|
||||
|
||||
fs.Close();
|
||||
if( !silent ) {
|
||||
printf("%ux%u matrix with %lu entries is saved to %s\n",
|
||||
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname );
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief cache load data given a file name, if filename ends with .buffer, direct load binary
|
||||
* otherwise the function will first check if fname + '.buffer' exists,
|
||||
* if binary buffer exists, it will reads from binary buffer, otherwise, it will load from text file,
|
||||
* and try to create a buffer file
|
||||
* \param fname name of binary data
|
||||
* \param silent whether print information or not
|
||||
* \param savebuffer whether do save binary buffer if it is text
|
||||
*/
|
||||
inline void CacheLoad( const char *fname, bool silent = false, bool savebuffer = true ) {
|
||||
int len = strlen( fname );
|
||||
if( len > 8 && !strcmp( fname + len - 7, ".buffer") ) {
|
||||
this->LoadBinary( fname, silent );
|
||||
return;
|
||||
}
|
||||
char bname[ 1024 ];
|
||||
sprintf( bname, "%s.buffer", fname );
|
||||
if( !this->LoadBinary( bname, silent ) ) {
|
||||
this->LoadText( fname, silent );
|
||||
if( savebuffer ) this->SaveBinary( bname, silent );
|
||||
}
|
||||
}
|
||||
private:
|
||||
/*! \brief update num_feature info */
|
||||
inline void UpdateInfo( void ) {
|
||||
this->num_feature = 0;
|
||||
for( size_t i = 0; i < data.NumRow(); i ++ ) {
|
||||
booster::FMatrixS::Line sp = data[i];
|
||||
for( unsigned j = 0; j < sp.len; j ++ ) {
|
||||
if( num_feature <= sp[j].findex ) {
|
||||
num_feature = sp[j].findex + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
};
|
||||
};
|
||||
#endif
|
||||
159
rank/xgboost_rank_eval.h
Normal file
159
rank/xgboost_rank_eval.h
Normal file
@ -0,0 +1,159 @@
|
||||
#ifndef XGBOOST_RANK_EVAL_H
|
||||
#define XGBOOST_RANK_EVAL_H
|
||||
/*!
|
||||
* \file xgboost_rank_eval.h
|
||||
* \brief evaluation metrics for ranking
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_omp.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*! \brief evaluator that evaluates the loss metrics */
|
||||
struct IRankEvaluator {
|
||||
/*!
|
||||
* \brief evaluate a specific metric
|
||||
* \param preds prediction
|
||||
* \param labels label
|
||||
*/
|
||||
virtual float Eval( const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index) const= 0;
|
||||
/*! \return name of metric */
|
||||
virtual const char *Name( void ) const= 0;
|
||||
};
|
||||
|
||||
struct Pair{
|
||||
float key_;
|
||||
float value_;
|
||||
|
||||
Pair(float key,float value){
|
||||
key_ = key;
|
||||
value_ = value_;
|
||||
}
|
||||
};
|
||||
|
||||
bool PairKeyComparer(const Pair &a, const Pair &b){
|
||||
return a.key_ < b.key_;
|
||||
}
|
||||
|
||||
bool PairValueComparer(const Pair &a, const Pair &b){
|
||||
return a.value_ < b.value_;
|
||||
}
|
||||
|
||||
/*! \brief Mean Average Precision */
|
||||
struct EvalMAP : public IRankEvaluator {
|
||||
virtual float Eval( const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index ) const {
|
||||
float acc = 0;
|
||||
std::vector<Pair> pairs_sort;
|
||||
for(int i = 0; i < group_index.size() - 1; i++){
|
||||
for(int j = group_index[i]; j < group_index[i+1];j++){
|
||||
Pair pair(preds[j],labels[j]);
|
||||
pairs_sort.push_back(pair);
|
||||
}
|
||||
acc += average_precision(pairs_sort);
|
||||
}
|
||||
return acc / (group_index.size() - 1);
|
||||
}
|
||||
|
||||
float float average_precision(std::vector<Pair> pairs_sort){
|
||||
std::sort<Pair>(pairs_sort.begin(),pairs_sort.end(),PairKeyComparer);
|
||||
float hits = 0;
|
||||
float average_precision = 0;
|
||||
for(int j = 0; j < pairs_sort.size(); j++){
|
||||
if(pairs_sort[j].value_ == 1){
|
||||
hits++;
|
||||
average_precision += hits/(j+1);
|
||||
}
|
||||
}
|
||||
if(hits != 0) average_precision /= hits;
|
||||
return average_precision;
|
||||
}
|
||||
|
||||
virtual const char *Name( void ) const {
|
||||
return "MAP";
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*! \brief Normalized DCG */
|
||||
struct EvalNDCG : public IRankEvaluator {
|
||||
virtual float Eval( const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index ) const {
|
||||
float acc = 0;
|
||||
std::vector<Pair> pairs_sort;
|
||||
for(int i = 0; i < group_index.size() - 1; i++){
|
||||
for(int j = group_index[i]; j < group_index[i+1];j++){
|
||||
Pair pair(preds[j],labels[j]);
|
||||
pairs_sort.push_back(pair);
|
||||
}
|
||||
acc += NDCG(pairs_sort);
|
||||
}
|
||||
}
|
||||
|
||||
float NDCG(std::vector<Pair> pairs_sort){
|
||||
std::sort<Pair>(pairs_sort.begin(),pairs_sort.end(),PairKeyComparer);
|
||||
float DCG = DCG(pairs_sort);
|
||||
std::sort<Pair>(pairs_sort.begin(),pairs_sort.end(),PairValueComparer);
|
||||
float IDCG = DCG(pairs_sort);
|
||||
if(IDCG == 0) return 0;
|
||||
return DCG/IDCG;
|
||||
}
|
||||
|
||||
float DCG(std::vector<Pair> pairs_sort){
|
||||
float ans = 0.0;
|
||||
ans += pairs_sort[0].value_;
|
||||
for(int i = 1; i < pairs_sort.size(); i++){
|
||||
ans += pairs_sort[i].value_/log(i + 1);
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
virtual const char *Name( void ) const {
|
||||
return "NDCG";
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
namespace rank {
|
||||
/*! \brief a set of evaluators */
|
||||
struct RankEvalSet {
|
||||
public:
|
||||
inline void AddEval( const char *name ) {
|
||||
if( !strcmp( name, "MAP") ) evals_.push_back( &map_ );
|
||||
if( !strcmp( name, "NDCG") ) evals_.push_back( &ndcg_ );
|
||||
}
|
||||
|
||||
inline void Init( void ) {
|
||||
std::sort( evals_.begin(), evals_.end() );
|
||||
evals_.resize( std::unique( evals_.begin(), evals_.end() ) - evals_.begin() );
|
||||
}
|
||||
|
||||
inline void Eval( FILE *fo, const char *evname,
|
||||
const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
const std::vector<int> &group_index ) const {
|
||||
for( size_t i = 0; i < evals_.size(); ++ i ) {
|
||||
float res = evals_[i]->Eval( preds, labels );
|
||||
fprintf( fo, "\t%s-%s:%f", evname, evals_[i]->Name(), res );
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
EvalMAP map_;
|
||||
EvalNDCG ndcg_;
|
||||
std::vector<const IRankEvaluator*> evals_;
|
||||
};
|
||||
};
|
||||
};
|
||||
#endif
|
||||
283
rank/xgboost_rank_main.cpp
Normal file
283
rank/xgboost_rank_main.cpp
Normal file
@ -0,0 +1,283 @@
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <cstring>
|
||||
#include "xgboost_rank.h"
|
||||
#include "../utils/xgboost_fmap.h"
|
||||
#include "../utils/xgboost_random.h"
|
||||
#include "../utils/xgboost_config.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
/*!
|
||||
* \brief wrapping the training process of the gradient boosting regression model,
|
||||
* given the configuation
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.chen@gmail.com
|
||||
*/
|
||||
class RankBoostTask {
|
||||
public:
|
||||
inline int Run( int argc, char *argv[] ) {
|
||||
if( argc < 2 ) {
|
||||
printf("Usage: <config>\n");
|
||||
return 0;
|
||||
}
|
||||
utils::ConfigIterator itr( argv[1] );
|
||||
while( itr.Next() ) {
|
||||
this->SetParam( itr.name(), itr.val() );
|
||||
}
|
||||
for( int i = 2; i < argc; i ++ ) {
|
||||
char name[256], val[256];
|
||||
if( sscanf( argv[i], "%[^=]=%s", name, val ) == 2 ) {
|
||||
this->SetParam( name, val );
|
||||
}
|
||||
}
|
||||
this->InitData();
|
||||
this->InitLearner();
|
||||
if( task == "dump" ) {
|
||||
this->TaskDump();
|
||||
return 0;
|
||||
}
|
||||
if( task == "interact" ) {
|
||||
this->TaskInteractive();
|
||||
return 0;
|
||||
}
|
||||
if( task == "dumppath" ) {
|
||||
this->TaskDumpPath();
|
||||
return 0;
|
||||
}
|
||||
if( task == "eval" ) {
|
||||
this->TaskEval();
|
||||
return 0;
|
||||
}
|
||||
if( task == "pred" ) {
|
||||
this->TaskPred();
|
||||
} else {
|
||||
this->TaskTrain();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
inline void SetParam( const char *name, const char *val ) {
|
||||
if( !strcmp("silent", name ) ) silent = atoi( val );
|
||||
if( !strcmp("use_buffer", name ) ) use_buffer = atoi( val );
|
||||
if( !strcmp("seed", name ) ) random::Seed( atoi(val) );
|
||||
if( !strcmp("num_round", name ) ) num_round = atoi( val );
|
||||
if( !strcmp("save_period", name ) ) save_period = atoi( val );
|
||||
if( !strcmp("task", name ) ) task = val;
|
||||
if( !strcmp("data", name ) ) train_path = val;
|
||||
if( !strcmp("test:data", name ) ) test_path = val;
|
||||
if( !strcmp("model_in", name ) ) model_in = val;
|
||||
if( !strcmp("model_out", name ) ) model_out = val;
|
||||
if( !strcmp("model_dir", name ) ) model_dir_path = val;
|
||||
if( !strcmp("fmap", name ) ) name_fmap = val;
|
||||
if( !strcmp("name_dump", name ) ) name_dump = val;
|
||||
if( !strcmp("name_dumppath", name ) ) name_dumppath = val;
|
||||
if( !strcmp("name_pred", name ) ) name_pred = val;
|
||||
if( !strcmp("dump_stats", name ) ) dump_model_stats = atoi( val );
|
||||
if( !strcmp("interact:action", name ) ) interact_action = val;
|
||||
if( !strncmp("batch:", name, 6 ) ) {
|
||||
cfg_batch.PushBack( name + 6, val );
|
||||
}
|
||||
if( !strncmp("eval[", name, 5 ) ) {
|
||||
char evname[ 256 ];
|
||||
utils::Assert( sscanf( name, "eval[%[^]]", evname ) == 1, "must specify evaluation name for display");
|
||||
eval_data_names.push_back( std::string( evname ) );
|
||||
eval_data_paths.push_back( std::string( val ) );
|
||||
}
|
||||
cfg.PushBack( name, val );
|
||||
}
|
||||
public:
|
||||
RankBoostTask( void ) {
|
||||
// default parameters
|
||||
silent = 0;
|
||||
use_buffer = 1;
|
||||
num_round = 10;
|
||||
save_period = 0;
|
||||
dump_model_stats = 0;
|
||||
task = "train";
|
||||
model_in = "NULL";
|
||||
model_out = "NULL";
|
||||
name_fmap = "NULL";
|
||||
name_pred = "pred.txt";
|
||||
name_dump = "dump.txt";
|
||||
name_dumppath = "dump.path.txt";
|
||||
model_dir_path = "./";
|
||||
interact_action = "update";
|
||||
}
|
||||
~RankBoostTask( void ) {
|
||||
for( size_t i = 0; i < deval.size(); i ++ ) {
|
||||
delete deval[i];
|
||||
}
|
||||
}
|
||||
private:
|
||||
inline void InitData( void ) {
|
||||
if( name_fmap != "NULL" ) fmap.LoadText( name_fmap.c_str() );
|
||||
if( task == "dump" ) return;
|
||||
if( task == "pred" || task == "dumppath" ) {
|
||||
data.CacheLoad( test_path.c_str(), silent!=0, use_buffer!=0 );
|
||||
} else {
|
||||
// training
|
||||
data.CacheLoad( train_path.c_str(), silent!=0, use_buffer!=0 );
|
||||
utils::Assert( eval_data_names.size() == eval_data_paths.size() );
|
||||
for( size_t i = 0; i < eval_data_names.size(); ++ i ) {
|
||||
deval.push_back( new RMatrix() );
|
||||
deval.back()->CacheLoad( eval_data_paths[i].c_str(), silent!=0, use_buffer!=0 );
|
||||
}
|
||||
}
|
||||
learner.SetData( &data, deval, eval_data_names );
|
||||
}
|
||||
inline void InitLearner( void ) {
|
||||
cfg.BeforeFirst();
|
||||
while( cfg.Next() ) {
|
||||
learner.SetParam( cfg.name(), cfg.val() );
|
||||
}
|
||||
if( model_in != "NULL" ) {
|
||||
utils::FileStream fi( utils::FopenCheck( model_in.c_str(), "rb") );
|
||||
learner.LoadModel( fi );
|
||||
fi.Close();
|
||||
} else {
|
||||
utils::Assert( task == "train", "model_in not specified" );
|
||||
learner.InitModel();
|
||||
}
|
||||
learner.InitTrainer();
|
||||
}
|
||||
inline void TaskTrain( void ) {
|
||||
const time_t start = time( NULL );
|
||||
unsigned long elapsed = 0;
|
||||
for( int i = 0; i < num_round; ++ i ) {
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
if( !silent ) printf("boosting round %d, %lu sec elapsed\n", i , elapsed );
|
||||
learner.UpdateOneIter( i );
|
||||
learner.EvalOneIter( i );
|
||||
if( save_period != 0 && (i+1) % save_period == 0 ) {
|
||||
this->SaveModel( i );
|
||||
}
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
}
|
||||
// always save final round
|
||||
if( save_period == 0 || num_round % save_period != 0 ) {
|
||||
if( model_out == "NULL" ) {
|
||||
this->SaveModel( num_round - 1 );
|
||||
} else {
|
||||
this->SaveModel( model_out.c_str() );
|
||||
}
|
||||
}
|
||||
if( !silent ) {
|
||||
printf("\nupdating end, %lu sec in all\n", elapsed );
|
||||
}
|
||||
}
|
||||
inline void TaskEval( void ) {
|
||||
learner.EvalOneIter( 0 );
|
||||
}
|
||||
inline void TaskInteractive( void ) {
|
||||
const time_t start = time( NULL );
|
||||
unsigned long elapsed = 0;
|
||||
int batch_action = 0;
|
||||
|
||||
cfg_batch.BeforeFirst();
|
||||
while( cfg_batch.Next() ) {
|
||||
if( !strcmp( cfg_batch.name(), "run" ) ) {
|
||||
learner.UpdateInteract( interact_action );
|
||||
batch_action += 1;
|
||||
} else {
|
||||
learner.SetParam( cfg_batch.name(), cfg_batch.val() );
|
||||
}
|
||||
}
|
||||
|
||||
if( batch_action == 0 ) {
|
||||
learner.UpdateInteract( interact_action );
|
||||
}
|
||||
utils::Assert( model_out != "NULL", "interactive mode must specify model_out" );
|
||||
this->SaveModel( model_out.c_str() );
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
|
||||
if( !silent ) {
|
||||
printf("\ninteractive update, %d batch actions, %lu sec in all\n", batch_action, elapsed );
|
||||
}
|
||||
}
|
||||
|
||||
inline void TaskDump( void ) {
|
||||
FILE *fo = utils::FopenCheck( name_dump.c_str(), "w" );
|
||||
learner.DumpModel( fo, fmap, dump_model_stats != 0 );
|
||||
fclose( fo );
|
||||
}
|
||||
inline void TaskDumpPath( void ) {
|
||||
FILE *fo = utils::FopenCheck( name_dumppath.c_str(), "w" );
|
||||
learner.DumpPath( fo, data );
|
||||
fclose( fo );
|
||||
}
|
||||
inline void SaveModel( const char *fname ) const {
|
||||
utils::FileStream fo( utils::FopenCheck( fname, "wb" ) );
|
||||
learner.SaveModel( fo );
|
||||
fo.Close();
|
||||
}
|
||||
inline void SaveModel( int i ) const {
|
||||
char fname[256];
|
||||
sprintf( fname ,"%s/%04d.model", model_dir_path.c_str(), i+1 );
|
||||
this->SaveModel( fname );
|
||||
}
|
||||
inline void TaskPred( void ) {
|
||||
std::vector<float> preds;
|
||||
if( !silent ) printf("start prediction...\n");
|
||||
learner.Predict( preds, data );
|
||||
if( !silent ) printf("writing prediction to %s\n", name_pred.c_str() );
|
||||
FILE *fo = utils::FopenCheck( name_pred.c_str(), "w" );
|
||||
for( size_t i = 0; i < preds.size(); i ++ ) {
|
||||
fprintf( fo, "%f\n", preds[i] );
|
||||
}
|
||||
fclose( fo );
|
||||
}
|
||||
private:
|
||||
/* \brief whether silent */
|
||||
int silent;
|
||||
/* \brief whether use auto binary buffer */
|
||||
int use_buffer;
|
||||
/* \brief number of boosting iterations */
|
||||
int num_round;
|
||||
/* \brief the period to save the model, 0 means only save the final round model */
|
||||
int save_period;
|
||||
/*! \brief interfact action */
|
||||
std::string interact_action;
|
||||
/* \brief the path of training/test data set */
|
||||
std::string train_path, test_path;
|
||||
/* \brief the path of test model file, or file to restart training */
|
||||
std::string model_in;
|
||||
/* \brief the path of final model file, to be saved */
|
||||
std::string model_out;
|
||||
/* \brief the path of directory containing the saved models */
|
||||
std::string model_dir_path;
|
||||
/* \brief task to perform */
|
||||
std::string task;
|
||||
/* \brief name of predict file */
|
||||
std::string name_pred;
|
||||
/* \brief whether dump statistics along with model */
|
||||
int dump_model_stats;
|
||||
/* \brief name of feature map */
|
||||
std::string name_fmap;
|
||||
/* \brief name of dump file */
|
||||
std::string name_dump;
|
||||
/* \brief name of dump path file */
|
||||
std::string name_dumppath;
|
||||
/* \brief the paths of validation data sets */
|
||||
std::vector<std::string> eval_data_paths;
|
||||
/* \brief the names of the evaluation data used in output log */
|
||||
std::vector<std::string> eval_data_names;
|
||||
/*! \brief saves configurations */
|
||||
utils::ConfigSaver cfg;
|
||||
/*! \brief batch configurations */
|
||||
utils::ConfigSaver cfg_batch;
|
||||
private:
|
||||
RMatrix data;
|
||||
std::vector<RMatrix*> deval;
|
||||
utils::FeatMap fmap;
|
||||
RankBoostLearner learner;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
int main( int argc, char *argv[] ) {
|
||||
xgboost::random::Seed( 0 );
|
||||
xgboost::rank::RankBoostTask tsk;
|
||||
return tsk.Run( argc, argv );
|
||||
}
|
||||
66
rank/xgboost_sample.h
Normal file
66
rank/xgboost_sample.h
Normal file
@ -0,0 +1,66 @@
|
||||
#ifndef _XGBOOST_SAMPLE_H_
|
||||
#define _XGBOOST_SAMPLE_H_
|
||||
|
||||
#include"../utils/xgboost_utils.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace rank {
|
||||
namespace sample {
|
||||
|
||||
struct Pairs {
|
||||
|
||||
/*
|
||||
* \brief retrieve the related pair information of an data instances
|
||||
* \param index, the index of retrieved instance
|
||||
* \return the index of instances paired
|
||||
*/
|
||||
std::vector<int> GetPairs(int index) {
|
||||
utils::assert(index >= start_ && index < end_, "The query index out of sampling bound");
|
||||
}
|
||||
|
||||
std::vector<std::vector<int>> pairs_;
|
||||
int start_;
|
||||
int end_;
|
||||
};
|
||||
|
||||
struct IPairSampler {
|
||||
/*
|
||||
* \brief Generate sample pairs given the predcions, labels, the start and the end index
|
||||
* of a specified group
|
||||
* \param preds, the predictions of all data instances
|
||||
* \param labels, the labels of all data instances
|
||||
* \param start, the start index of a specified group
|
||||
* \param end, the end index of a specified group
|
||||
* \return the generated pairs
|
||||
*/
|
||||
virtual Pairs GenPairs(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
int start,int end) = 0;
|
||||
};
|
||||
|
||||
/*! \brief a set of evaluators */
|
||||
struct PairSamplerSet{
|
||||
public:
|
||||
inline void AssignSampler( const char *name ){
|
||||
if( !strcmp( name, "rmse") ) evals_.push_back( &rmse_ );
|
||||
if( !strcmp( name, "error") ) evals_.push_back( &error_ );
|
||||
if( !strcmp( name, "logloss") ) evals_.push_back( &logloss_ );
|
||||
}
|
||||
|
||||
|
||||
Pairs GenPairs(const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
int start,int end){
|
||||
|
||||
|
||||
}
|
||||
private:
|
||||
EvalRMSE rmse_;
|
||||
EvalError error_;
|
||||
EvalLogLoss logloss_;
|
||||
std::vector<const IEvaluator*> evals_;
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user