xgboost/tests/cpp/gbm/test_gbtree.cc
2024-03-20 16:14:38 -07:00

755 lines
26 KiB
C++

/**
* Copyright 2019-2023, XGBoost contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h>
#include <xgboost/host_device_vector.h> // for HostDeviceVector
#include <xgboost/json.h> // for Json, Object
#include <xgboost/learner.h> // for Learner
#include <limits> // for numeric_limits
#include <memory> // for shared_ptr
#include <optional> // for optional
#include <string> // for string
#include "../../../src/data/proxy_dmatrix.h" // for DMatrixProxy
#include "../../../src/gbm/gbtree.h"
#include "../filesystem.h" // dmlc::TemporaryDirectory
#include "../helpers.h"
#include "xgboost/base.h"
#include "xgboost/predictor.h"
namespace xgboost {
TEST(GBTree, SelectTreeMethod) {
size_t constexpr kCols = 10;
Context ctx;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> p_gbm {
GradientBooster::Create("gbtree", &ctx, &mparam)};
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
// Test if `tree_method` can be set
Args args {{"tree_method", "approx"}};
gbtree.Configure({args.cbegin(), args.cend()});
gbtree.Configure(args);
auto const& tparam = gbtree.GetTrainParam();
gbtree.Configure({{"tree_method", "approx"}});
ASSERT_EQ(tparam.updater_seq, "grow_histmaker");
gbtree.Configure({{"tree_method", "exact"}});
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
gbtree.Configure({{"tree_method", "hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
ctx.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
gbtree.Configure({{"tree_method", "gpu_hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
#endif // XGBOOST_USE_CUDA, XGBOOST_USE_HIP
}
TEST(GBTree, PredictionCache) {
size_t constexpr kRows = 100, kCols = 10;
Context ctx;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> p_gbm {
GradientBooster::Create("gbtree", &ctx, &mparam)};
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
gbtree.Configure({{"tree_method", "hist"}});
auto p_m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
linalg::Matrix<GradientPair> gpair({kRows}, ctx.Device());
gpair.Data()->Copy(GenerateRandomGradients(kRows));
PredictionCacheEntry out_predictions;
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(1, out_predictions.version);
std::vector<float> first_iter = out_predictions.predictions.HostVector();
// Add 1 more boosted round
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(2, out_predictions.version);
// Update the cache for all rounds
out_predictions.version = 0;
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(2, out_predictions.version);
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions, nullptr);
// drop the cache.
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 2);
ASSERT_EQ(0, out_predictions.version);
// half open set [1, 3)
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 3);
ASSERT_EQ(0, out_predictions.version);
// iteration end
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 2);
ASSERT_EQ(2, out_predictions.version);
// restart the cache when end iteration is smaller than cache version
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 1);
ASSERT_EQ(1, out_predictions.version);
ASSERT_EQ(out_predictions.predictions.HostVector(), first_iter);
}
TEST(GBTree, WrongUpdater) {
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
p_dmat->Info().labels.Reshape(kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
// Hist can not be used for updating tree.
learner->SetParams(Args{{"tree_method", "hist"}, {"process_type", "update"}});
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
// Prune can not be used for learning new tree.
learner->SetParams(
Args{{"tree_method", "prune"}, {"process_type", "default"}});
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST(GBTree, ChoosePredictor) {
// The test ensures data don't get pulled into device.
std::size_t constexpr kRows = 17, kCols = 15;
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
auto const& data = (*(p_dmat->GetBatches<SparsePage>().begin())).data;
p_dmat->Info().labels.Reshape(kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
ASSERT_TRUE(data.HostCanWrite());
dmlc::TemporaryDirectory tempdir;
const std::string fname = tempdir.path + "/model_param.bst";
{
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
learner->Save(fo.get());
}
// a new learner
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
{
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
learner->Load(fi.get());
}
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
ASSERT_TRUE(data.HostCanWrite());
ASSERT_FALSE(data.DeviceCanWrite());
ASSERT_FALSE(data.DeviceCanRead());
// pull data into device.
data.HostVector();
data.SetDevice(DeviceOrd::CUDA(0));
data.DeviceSpan();
ASSERT_FALSE(data.HostCanWrite());
// another new learner
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
// data is not pulled back into host
ASSERT_FALSE(data.HostCanWrite());
}
TEST(GBTree, ChooseTreeMethod) {
bst_idx_t n_samples{128};
bst_feature_t n_features{64};
auto Xy = RandomDataGenerator{n_samples, n_features, 0.5f}.GenerateDMatrix(true);
auto with_update = [&](std::optional<std::string> device,
std::optional<std::string> tree_method) {
auto learner = std::unique_ptr<Learner>(Learner::Create({Xy}));
if (tree_method.has_value()) {
learner->SetParam("tree_method", tree_method.value());
}
if (device.has_value()) {
auto const& d = device.value();
if (std::isdigit(d.front()) || d.front() == '-') {
learner->SetParam("gpu_id", d);
} else {
learner->SetParam("device", d);
}
}
learner->Configure();
for (std::int32_t i = 0; i < 3; ++i) {
learner->UpdateOneIter(0, Xy);
}
Json config{Object{}};
learner->SaveConfig(&config);
auto updater = config["learner"]["gradient_booster"]["updater"];
CHECK(!IsA<Null>(updater));
return updater;
};
auto with_boost = [&](std::optional<std::string> device, std::optional<std::string> tree_method) {
auto learner = std::unique_ptr<Learner>(Learner::Create({Xy}));
if (tree_method.has_value()) {
learner->SetParam("tree_method", tree_method.value());
}
if (device.has_value()) {
auto const& d = device.value();
if (std::isdigit(d.front()) || d.front() == '-') {
learner->SetParam("gpu_id", d);
} else {
learner->SetParam("device", d);
}
}
learner->Configure();
for (std::int32_t i = 0; i < 3; ++i) {
linalg::Matrix<GradientPair> gpair{{Xy->Info().num_row_}, DeviceOrd::CPU()};
gpair.Data()->Copy(GenerateRandomGradients(Xy->Info().num_row_));
learner->BoostOneIter(0, Xy, &gpair);
}
Json config{Object{}};
learner->SaveConfig(&config);
auto updater = config["learner"]["gradient_booster"]["updater"];
return updater;
};
// | | hist | gpu_hist | exact | NA |
// |--------+---------+----------+-------+-----|
// | CUDA:0 | GPU | GPU (w) | Err | GPU |
// | CPU | CPU | GPU (w) | CPU | CPU |
// |--------+---------+----------+-------+-----|
// | -1 | CPU | GPU (w) | CPU | CPU |
// | 0 | GPU | GPU (w) | Err | GPU |
// |--------+---------+----------+-------+-----|
// | NA | CPU | GPU (w) | CPU | CPU |
//
// - (w): warning
// - CPU: Run on CPU.
// - GPU: Run on CUDA.
// - Err: Not feasible.
// - NA: Parameter is not specified.
// When GPU hist is specified with a CPU context, we should emit an error. However, it's
// quite difficult to detect whether the CPU context is being used because it's the
// default or because it's specified by the user.
std::map<std::pair<std::optional<std::string>, std::optional<std::string>>, std::string>
expectation{
// hist
{{"hist", "-1"}, "grow_quantile_histmaker"},
{{"hist", "0"}, "grow_gpu_hist"},
{{"hist", "cpu"}, "grow_quantile_histmaker"},
{{"hist", "cuda"}, "grow_gpu_hist"},
{{"hist", "cuda:0"}, "grow_gpu_hist"},
{{"hist", std::nullopt}, "grow_quantile_histmaker"},
// gpu_hist
{{"gpu_hist", "-1"}, "grow_gpu_hist"},
{{"gpu_hist", "0"}, "grow_gpu_hist"},
{{"gpu_hist", "cpu"}, "grow_gpu_hist"},
{{"gpu_hist", "cuda"}, "grow_gpu_hist"},
{{"gpu_hist", "cuda:0"}, "grow_gpu_hist"},
{{"gpu_hist", std::nullopt}, "grow_gpu_hist"},
// exact
{{"exact", "-1"}, "grow_colmaker,prune"},
{{"exact", "0"}, "err"},
{{"exact", "cpu"}, "grow_colmaker,prune"},
{{"exact", "cuda"}, "err"},
{{"exact", "cuda:0"}, "err"},
{{"exact", std::nullopt}, "grow_colmaker,prune"},
// NA
{{std::nullopt, "-1"}, "grow_quantile_histmaker"},
{{std::nullopt, "0"}, "grow_gpu_hist"}, // default to hist
{{std::nullopt, "cpu"}, "grow_quantile_histmaker"},
{{std::nullopt, "cuda"}, "grow_gpu_hist"},
{{std::nullopt, "cuda:0"}, "grow_gpu_hist"},
{{std::nullopt, std::nullopt}, "grow_quantile_histmaker"},
};
auto run_test = [&](auto fn) {
for (auto const& kv : expectation) {
auto device = kv.first.second;
auto tm = kv.first.first;
if (kv.second == "err") {
ASSERT_THROW({ fn(device, tm); }, dmlc::Error)
<< " device:" << device.value_or("NA") << " tm:" << tm.value_or("NA");
continue;
}
auto up = fn(device, tm);
auto ups = get<Array const>(up);
auto exp_names = common::Split(kv.second, ',');
ASSERT_EQ(exp_names.size(), ups.size());
for (std::size_t i = 0; i < exp_names.size(); ++i) {
ASSERT_EQ(get<String const>(ups[i]["name"]), exp_names[i])
<< " device:" << device.value_or("NA") << " tm:" << tm.value_or("NA");
}
}
};
run_test(with_update);
run_test(with_boost);
}
#endif // XGBOOST_USE_CUDA
// Some other parts of test are in `Tree.JsonIO'.
TEST(GBTree, JsonIO) {
size_t constexpr kRows = 16, kCols = 16;
Context ctx;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> gbm{
CreateTrainedGBM("gbtree", Args{{"tree_method", "exact"}, {"default_direction", "left"}},
kRows, kCols, &mparam, &ctx)};
Json model{Object()};
model["model"] = Object();
auto j_model = model["model"];
model["config"] = Object();
auto j_config = model["config"];
gbm->SaveModel(&j_model);
gbm->SaveConfig(&j_config);
std::string model_str;
Json::Dump(model, &model_str);
model = Json::Load({model_str.c_str(), model_str.size()});
j_model = model["model"];
j_config = model["config"];
ASSERT_EQ(get<String>(j_model["name"]), "gbtree");
auto gbtree_model = j_model["model"];
ASSERT_EQ(get<Array>(gbtree_model["trees"]).size(), 1ul);
ASSERT_EQ(get<Integer>(get<Object>(get<Array>(gbtree_model["trees"]).front()).at("id")), 0);
ASSERT_EQ(get<Array>(gbtree_model["tree_info"]).size(), 1ul);
auto j_train_param = j_config["gbtree_model_param"];
ASSERT_EQ(get<String>(j_train_param["num_parallel_tree"]), "1");
auto check_config = [](Json j_up_config) {
auto colmaker = get<Array const>(j_up_config).front();
auto pruner = get<Array const>(j_up_config).back();
ASSERT_EQ(get<String const>(colmaker["name"]), "grow_colmaker");
ASSERT_EQ(get<String const>(pruner["name"]), "prune");
ASSERT_EQ(get<String const>(colmaker["colmaker_train_param"]["default_direction"]), "left");
};
check_config(j_config["updater"]);
std::unique_ptr<GradientBooster> loaded(gbm::GBTree::Create("gbtree", &ctx, &mparam));
loaded->LoadModel(j_model);
loaded->LoadConfig(j_config);
// roundtrip test
Json j_config_rt{Object{}};
loaded->SaveConfig(&j_config_rt);
check_config(j_config_rt["updater"]);
}
TEST(Dart, JsonIO) {
size_t constexpr kRows = 16, kCols = 16;
Context ctx;
LearnerModelParam mparam{MakeMP(kCols, .5, 1)};
std::unique_ptr<GradientBooster> gbm{
CreateTrainedGBM("dart", Args{}, kRows, kCols, &mparam, &ctx)};
Json model {Object()};
model["model"] = Object();
auto& j_model = model["model"];
model["config"] = Object();
auto& j_param = model["config"];
gbm->SaveModel(&j_model);
gbm->SaveConfig(&j_param);
std::string model_str;
Json::Dump(model, &model_str);
model = Json::Load({model_str.c_str(), model_str.size()});
ASSERT_EQ(get<String>(model["model"]["name"]), "dart") << model;
ASSERT_EQ(get<String>(model["config"]["name"]), "dart");
ASSERT_TRUE(IsA<Object>(model["model"]["gbtree"]));
ASSERT_NE(get<Array>(model["model"]["weight_drop"]).size(), 0ul);
}
namespace {
class Dart : public testing::TestWithParam<char const*> {
public:
void Run(std::string device) {
size_t constexpr kRows = 16, kCols = 10;
HostDeviceVector<float> data;
Context ctx;
if (device == "GPU") {
ctx = MakeCUDACtx(0);
}
auto rng = RandomDataGenerator(kRows, kCols, 0).Device(ctx.Device());
auto array_str = rng.GenerateArrayInterface(&data);
auto p_mat = GetDMatrixFromData(data.HostVector(), kRows, kCols);
std::vector<bst_float> labels(kRows);
for (size_t i = 0; i < kRows; ++i) {
labels[i] = i % 2;
}
p_mat->SetInfo("label", labels.data(), DataType::kFloat32, kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
learner->SetParam("booster", "dart");
learner->SetParam("rate_drop", "0.5");
learner->Configure();
for (size_t i = 0; i < 16; ++i) {
learner->UpdateOneIter(i, p_mat);
}
learner->SetParam("device", ctx.DeviceName());
HostDeviceVector<float> predts_training;
learner->Predict(p_mat, false, &predts_training, 0, 0, true);
HostDeviceVector<float>* inplace_predts;
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
if (ctx.IsCUDA()) {
x->SetCUDAArray(array_str.c_str());
} else {
x->SetArrayData(array_str.c_str());
}
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
&inplace_predts, 0, 0);
CHECK(inplace_predts);
HostDeviceVector<float> predts_inference;
learner->Predict(p_mat, false, &predts_inference, 0, 0, false);
auto const& h_predts_training = predts_training.ConstHostVector();
auto const& h_predts_inference = predts_inference.ConstHostVector();
auto const& h_inplace_predts = inplace_predts->HostVector();
ASSERT_EQ(h_predts_training.size(), h_predts_inference.size());
ASSERT_EQ(h_inplace_predts.size(), h_predts_inference.size());
for (size_t i = 0; i < predts_inference.Size(); ++i) {
// Inference doesn't drop tree.
ASSERT_GT(std::abs(h_predts_training[i] - h_predts_inference[i]), kRtEps * 10);
// Inplace prediction is inference.
ASSERT_LT(h_inplace_predts[i] - h_predts_inference[i], kRtEps / 10);
}
}
};
} // anonymous namespace
TEST_P(Dart, Prediction) { this->Run(GetParam()); }
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
INSTANTIATE_TEST_SUITE_P(PredictorTypes, Dart, testing::Values("CPU", "GPU"));
#else
INSTANTIATE_TEST_SUITE_P(PredictorTypes, Dart, testing::Values("CPU"));
#endif // defined(XGBOOST_USE_CUDA)
std::pair<Json, Json> TestModelSlice(std::string booster) {
size_t constexpr kRows = 1000, kCols = 100, kForest = 2, kClasses = 3;
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true, false, kClasses);
int32_t kIters = 10;
std::unique_ptr<Learner> learner {
Learner::Create({m})
};
learner->SetParams(Args{{"booster", booster},
{"tree_method", "hist"},
{"num_parallel_tree", std::to_string(kForest)},
{"num_class", std::to_string(kClasses)},
{"subsample", "0.5"},
{"max_depth", "2"}});
for (auto i = 0; i < kIters; ++i) {
learner->UpdateOneIter(i, m);
}
Json model{Object()};
Json config{Object()};
learner->SaveModel(&model);
learner->SaveConfig(&config);
bool out_of_bound = false;
size_t constexpr kSliceStart = 2, kSliceEnd = 8, kStep = 3;
std::unique_ptr<Learner> sliced {learner->Slice(kSliceStart, kSliceEnd, kStep, &out_of_bound)};
Json sliced_model{Object()};
sliced->SaveModel(&sliced_model);
auto get_shape = [&](Json const& model) {
if (booster == "gbtree") {
return get<Object const>(model["learner"]["gradient_booster"]["model"]["gbtree_model_param"]);
} else {
return get<Object const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["gbtree_model_param"]);
}
};
auto const& model_shape = get_shape(sliced_model);
CHECK_EQ(get<String const>(model_shape.at("num_trees")), std::to_string(2 * kClasses * kForest));
Json sliced_config {Object()};
sliced->SaveConfig(&sliced_config);
// Only num trees is changed
if (booster == "gbtree") {
sliced_config["learner"]["gradient_booster"]["gbtree_model_param"]["num_trees"] = String("60");
} else {
sliced_config["learner"]["gradient_booster"]["gbtree"]["gbtree_model_param"]["num_trees"] =
String("60");
}
CHECK_EQ(sliced_config, config);
auto get_trees = [&](Json const& model) {
if (booster == "gbtree") {
return get<Array const>(model["learner"]["gradient_booster"]["model"]["trees"]);
} else {
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
}
};
auto get_info = [&](Json const& model) {
if (booster == "gbtree") {
return get<Array const>(model["learner"]["gradient_booster"]["model"]["tree_info"]);
} else {
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["tree_info"]);
}
};
auto const &sliced_trees = get_trees(sliced_model);
CHECK_EQ(sliced_trees.size(), 2 * kClasses * kForest);
auto constexpr kLayerSize = kClasses * kForest;
auto const &sliced_info = get_info(sliced_model);
for (size_t layer = 0; layer < 2; ++layer) {
for (size_t j = 0; j < kClasses; ++j) {
for (size_t k = 0; k < kForest; ++k) {
auto idx = layer * kLayerSize + j * kForest + k;
auto const &group = get<Integer const>(sliced_info.at(idx));
CHECK_EQ(static_cast<size_t>(group), j);
}
}
}
auto const& trees = get_trees(model);
// Sliced layers are [2, 5]
auto begin = kLayerSize * kSliceStart;
auto end = begin + kLayerSize;
auto j = 0;
for (size_t i = begin; i < end; ++i) {
Json tree = trees[i];
tree["id"] = Integer(0); // id is different, we set it to 0 to allow comparison.
auto sliced_tree = sliced_trees[j];
sliced_tree["id"] = Integer(0);
CHECK_EQ(tree, sliced_tree);
j++;
}
begin = kLayerSize * (kSliceStart + kStep);
end = begin + kLayerSize;
for (size_t i = begin; i < end; ++i) {
Json tree = trees[i];
tree["id"] = Integer(0);
auto sliced_tree = sliced_trees[j];
sliced_tree["id"] = Integer(0);
CHECK_EQ(tree, sliced_tree);
j++;
}
// CHECK sliced model doesn't have dependency on the old one
learner.reset();
CHECK_EQ(sliced->GetNumFeature(), kCols);
return std::make_pair(model, sliced_model);
}
TEST(GBTree, Slice) {
TestModelSlice("gbtree");
}
TEST(Dart, Slice) {
Json model, sliced_model;
std::tie(model, sliced_model) = TestModelSlice("dart");
auto const& weights = get<Array const>(model["learner"]["gradient_booster"]["weight_drop"]);
auto const& trees = get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
ASSERT_EQ(weights.size(), trees.size());
}
TEST(GBTree, FeatureScore) {
size_t n_samples = 1000, n_features = 10, n_classes = 4;
auto m = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
std::unique_ptr<Learner> learner{ Learner::Create({m}) };
learner->SetParam("num_class", std::to_string(n_classes));
learner->Configure();
for (size_t i = 0; i < 2; ++i) {
learner->UpdateOneIter(i, m);
}
std::vector<bst_feature_t> features_weight;
std::vector<float> scores_weight;
learner->CalcFeatureScore("weight", {}, &features_weight, &scores_weight);
ASSERT_EQ(features_weight.size(), scores_weight.size());
ASSERT_LE(features_weight.size(), learner->GetNumFeature());
ASSERT_TRUE(std::is_sorted(features_weight.begin(), features_weight.end()));
auto test_eq = [&learner, &scores_weight](std::string type) {
std::vector<bst_feature_t> features;
std::vector<float> scores;
learner->CalcFeatureScore(type, {}, &features, &scores);
std::vector<bst_feature_t> features_total;
std::vector<float> scores_total;
learner->CalcFeatureScore("total_" + type, {}, &features_total, &scores_total);
for (size_t i = 0; i < scores_weight.size(); ++i) {
ASSERT_LE(RelError(scores_total[i] / scores[i], scores_weight[i]), kRtEps);
}
};
test_eq("gain");
test_eq("cover");
}
TEST(GBTree, PredictRange) {
size_t n_samples = 1000, n_features = 10, n_classes = 4;
auto m = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
std::unique_ptr<Learner> learner{Learner::Create({m})};
learner->SetParam("num_class", std::to_string(n_classes));
learner->Configure();
for (size_t i = 0; i < 2; ++i) {
learner->UpdateOneIter(i, m);
}
HostDeviceVector<float> out_predt;
ASSERT_THROW(learner->Predict(m, false, &out_predt, 0, 3), dmlc::Error);
auto m_1 =
RandomDataGenerator{n_samples, n_features, 0.5}.GenerateDMatrix(true, false, n_classes);
HostDeviceVector<float> out_predt_full;
learner->Predict(m_1, false, &out_predt_full, 0, 0);
ASSERT_TRUE(std::equal(out_predt.HostVector().begin(), out_predt.HostVector().end(),
out_predt_full.HostVector().begin()));
{
// inplace predict
HostDeviceVector<float> raw_storage;
auto raw = RandomDataGenerator{n_samples, n_features, 0.5}.GenerateArrayInterface(&raw_storage);
std::shared_ptr<data::DMatrixProxy> x{new data::DMatrixProxy{}};
x->SetArrayData(raw.data());
HostDeviceVector<float>* out_predt;
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
&out_predt, 0, 2);
auto h_out_predt = out_predt->HostVector();
learner->InplacePredict(x, PredictionType::kValue, std::numeric_limits<float>::quiet_NaN(),
&out_predt, 0, 0);
auto h_out_predt_full = out_predt->HostVector();
ASSERT_TRUE(std::equal(h_out_predt.begin(), h_out_predt.end(), h_out_predt_full.begin()));
// Out of range.
ASSERT_THROW(learner->InplacePredict(x, PredictionType::kValue,
std::numeric_limits<float>::quiet_NaN(), &out_predt, 0, 3),
dmlc::Error);
}
}
TEST(GBTree, InplacePredictionError) {
std::size_t n_samples{2048}, n_features{32};
auto test_ext_err = [&](std::string booster, Context const* ctx) {
std::shared_ptr<DMatrix> p_fmat =
RandomDataGenerator{n_samples, n_features, 0.5f}.Batches(2).GenerateSparsePageDMatrix(
"cache", true);
std::unique_ptr<Learner> learner{Learner::Create({p_fmat})};
learner->SetParams(Args{{"booster", booster}, {"device", ctx->DeviceName()}});
learner->Configure();
for (std::int32_t i = 0; i < 3; ++i) {
learner->UpdateOneIter(i, p_fmat);
}
HostDeviceVector<float>* out_predt;
ASSERT_THROW(
{
learner->InplacePredict(p_fmat, PredictionType::kValue,
std::numeric_limits<float>::quiet_NaN(), &out_predt, 0, 0);
},
dmlc::Error);
};
{
Context ctx;
test_ext_err("gbtree", &ctx);
test_ext_err("dart", &ctx);
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
{
auto ctx = MakeCUDACtx(0);
test_ext_err("gbtree", &ctx);
test_ext_err("dart", &ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
auto test_qdm_err = [&](std::string booster, Context const* ctx) {
std::shared_ptr<DMatrix> p_fmat;
bst_bin_t max_bins = 16;
auto rng = RandomDataGenerator{n_samples, n_features, 0.5f}.Device(ctx->Device()).Bins(max_bins);
if (ctx->IsCPU()) {
p_fmat = rng.GenerateQuantileDMatrix(true);
} else {
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
p_fmat = rng.GenerateDeviceDMatrix(true);
#else
CHECK(p_fmat);
#endif // defined(XGBOOST_USE_CUDA)
};
std::unique_ptr<Learner> learner{Learner::Create({p_fmat})};
learner->SetParams(Args{{"booster", booster},
{"max_bin", std::to_string(max_bins)},
{"device", ctx->DeviceName()}});
learner->Configure();
for (std::int32_t i = 0; i < 3; ++i) {
learner->UpdateOneIter(i, p_fmat);
}
HostDeviceVector<float>* out_predt;
ASSERT_THROW(
{
learner->InplacePredict(p_fmat, PredictionType::kValue,
std::numeric_limits<float>::quiet_NaN(), &out_predt, 0, 0);
},
dmlc::Error);
};
{
Context ctx;
test_qdm_err("gbtree", &ctx);
test_qdm_err("dart", &ctx);
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
{
auto ctx = MakeCUDACtx(0);
test_qdm_err("gbtree", &ctx);
test_qdm_err("dart", &ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
}
} // namespace xgboost