xgboost/tests/cpp/common/test_stats.cc
2023-10-23 17:13:02 -07:00

131 lines
3.5 KiB
C++

/**
* Copyright 2022-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h>
#include <xgboost/linalg.h> // Tensor,Vector
#include "../../../src/common/stats.h"
#include "../../../src/common/transform_iterator.h" // common::MakeIndexTransformIter
#include "../helpers.h"
namespace xgboost::common {
TEST(Stats, Quantile) {
Context ctx;
{
linalg::Tensor<float, 1> arr({20.f, 0.f, 15.f, 50.f, 40.f, 0.f, 35.f}, {7}, DeviceOrd::CPU());
std::vector<size_t> index{0, 2, 3, 4, 6};
auto h_arr = arr.HostView();
auto beg = MakeIndexTransformIter([&](size_t i) { return h_arr(index[i]); });
auto end = beg + index.size();
auto q = Quantile(&ctx, 0.40f, beg, end);
ASSERT_EQ(q, 26.0);
q = Quantile(&ctx, 0.20f, beg, end);
ASSERT_EQ(q, 16.0);
q = Quantile(&ctx, 0.10f, beg, end);
ASSERT_EQ(q, 15.0);
}
{
std::vector<float> vec{1., 2., 3., 4., 5.};
auto beg = MakeIndexTransformIter([&](size_t i) { return vec[i]; });
auto end = beg + vec.size();
auto q = Quantile(&ctx, 0.5f, beg, end);
ASSERT_EQ(q, 3.);
}
}
TEST(Stats, WeightedQuantile) {
Context ctx;
linalg::Tensor<float, 1> arr({1.f, 2.f, 3.f, 4.f, 5.f}, {5}, DeviceOrd::CPU());
linalg::Tensor<float, 1> weight({1.f, 1.f, 1.f, 1.f, 1.f}, {5}, DeviceOrd::CPU());
auto h_arr = arr.HostView();
auto h_weight = weight.HostView();
auto beg = MakeIndexTransformIter([&](size_t i) { return h_arr(i); });
auto end = beg + arr.Size();
auto w = MakeIndexTransformIter([&](size_t i) { return h_weight(i); });
auto q = WeightedQuantile(&ctx, 0.50f, beg, end, w);
ASSERT_EQ(q, 3);
q = WeightedQuantile(&ctx, 0.0, beg, end, w);
ASSERT_EQ(q, 1);
q = WeightedQuantile(&ctx, 1.0, beg, end, w);
ASSERT_EQ(q, 5);
}
TEST(Stats, Median) {
Context ctx;
{
linalg::Tensor<float, 2> values{{.0f, .0f, 1.f, 2.f}, {4}, DeviceOrd::CPU()};
HostDeviceVector<float> weights;
linalg::Tensor<float, 1> out;
Median(&ctx, values, weights, &out);
auto m = out(0);
ASSERT_EQ(m, .5f);
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
ctx = ctx.MakeCUDA(0);
ASSERT_FALSE(ctx.IsCPU());
Median(&ctx, values, weights, &out);
m = out(0);
ASSERT_EQ(m, .5f);
#endif // defined(XGBOOST_USE_CUDA)
}
{
ctx = ctx.MakeCPU();
// 4x2 matrix
linalg::Tensor<float, 2> values{{0.f, 0.f, 0.f, 0.f, 1.f, 1.f, 2.f, 2.f}, {4, 2}, ctx.Device()};
HostDeviceVector<float> weights;
linalg::Tensor<float, 1> out;
Median(&ctx, values, weights, &out);
ASSERT_EQ(out(0), .5f);
ASSERT_EQ(out(1), .5f);
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
ctx = ctx.MakeCUDA(0);
Median(&ctx, values, weights, &out);
ASSERT_EQ(out(0), .5f);
ASSERT_EQ(out(1), .5f);
#endif // defined(XGBOOST_USE_CUDA)
}
}
namespace {
void TestMean(Context const* ctx) {
std::size_t n{128};
linalg::Vector<float> data({n}, ctx->Device());
auto h_v = data.HostView().Values();
std::iota(h_v.begin(), h_v.end(), .0f);
auto nf = static_cast<float>(n);
float mean = nf * (nf - 1) / 2 / n;
linalg::Vector<float> res{{1}, ctx->Device()};
Mean(ctx, data, &res);
auto h_res = res.HostView();
ASSERT_EQ(h_res.Size(), 1);
ASSERT_EQ(mean, h_res(0));
}
} // anonymous namespace
TEST(Stats, Mean) {
Context ctx;
TestMean(&ctx);
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST(Stats, GPUMean) {
auto ctx = MakeCUDACtx(0);
TestMean(&ctx);
}
#endif // defined(XGBOOST_USE_CUDA)
} // namespace xgboost::common