83 lines
3.3 KiB
Python
83 lines
3.3 KiB
Python
'''
|
|
Collection of examples for using xgboost.spark estimator interface
|
|
==================================================================
|
|
|
|
@author: Weichen Xu
|
|
'''
|
|
from pyspark.sql import SparkSession
|
|
from pyspark.sql.functions import rand
|
|
from pyspark.ml.linalg import Vectors
|
|
import sklearn.datasets
|
|
from sklearn.model_selection import train_test_split
|
|
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor
|
|
from pyspark.ml.evaluation import RegressionEvaluator, MulticlassClassificationEvaluator
|
|
|
|
|
|
spark = SparkSession.builder.master("local[*]").getOrCreate()
|
|
|
|
|
|
def create_spark_df(X, y):
|
|
return spark.createDataFrame(
|
|
spark.sparkContext.parallelize([
|
|
(Vectors.dense(features), float(label))
|
|
for features, label in zip(X, y)
|
|
]),
|
|
["features", "label"]
|
|
)
|
|
|
|
|
|
# load diabetes dataset (regression dataset)
|
|
diabetes_X, diabetes_y = sklearn.datasets.load_diabetes(return_X_y=True)
|
|
diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test = \
|
|
train_test_split(diabetes_X, diabetes_y, test_size=0.3, shuffle=True)
|
|
|
|
diabetes_train_spark_df = create_spark_df(diabetes_X_train, diabetes_y_train)
|
|
diabetes_test_spark_df = create_spark_df(diabetes_X_test, diabetes_y_test)
|
|
|
|
# train xgboost regressor model
|
|
xgb_regressor = SparkXGBRegressor(max_depth=5)
|
|
xgb_regressor_model = xgb_regressor.fit(diabetes_train_spark_df)
|
|
|
|
transformed_diabetes_test_spark_df = xgb_regressor_model.transform(diabetes_test_spark_df)
|
|
regressor_evaluator = RegressionEvaluator(metricName="rmse")
|
|
print(f"regressor rmse={regressor_evaluator.evaluate(transformed_diabetes_test_spark_df)}")
|
|
|
|
diabetes_train_spark_df2 = diabetes_train_spark_df.withColumn(
|
|
"validationIndicatorCol", rand(1) > 0.7
|
|
)
|
|
|
|
# train xgboost regressor model with validation dataset
|
|
xgb_regressor2 = SparkXGBRegressor(max_depth=5, validation_indicator_col="validationIndicatorCol")
|
|
xgb_regressor_model2 = xgb_regressor2.fit(diabetes_train_spark_df2)
|
|
transformed_diabetes_test_spark_df2 = xgb_regressor_model2.transform(diabetes_test_spark_df)
|
|
print(f"regressor2 rmse={regressor_evaluator.evaluate(transformed_diabetes_test_spark_df2)}")
|
|
|
|
|
|
# load iris dataset (classification dataset)
|
|
iris_X, iris_y = sklearn.datasets.load_iris(return_X_y=True)
|
|
iris_X_train, iris_X_test, iris_y_train, iris_y_test = \
|
|
train_test_split(iris_X, iris_y, test_size=0.3, shuffle=True)
|
|
|
|
iris_train_spark_df = create_spark_df(iris_X_train, iris_y_train)
|
|
iris_test_spark_df = create_spark_df(iris_X_test, iris_y_test)
|
|
|
|
# train xgboost classifier model
|
|
xgb_classifier = SparkXGBClassifier(max_depth=5)
|
|
xgb_classifier_model = xgb_classifier.fit(iris_train_spark_df)
|
|
|
|
transformed_iris_test_spark_df = xgb_classifier_model.transform(iris_test_spark_df)
|
|
classifier_evaluator = MulticlassClassificationEvaluator(metricName="f1")
|
|
print(f"classifier f1={classifier_evaluator.evaluate(transformed_iris_test_spark_df)}")
|
|
|
|
iris_train_spark_df2 = iris_train_spark_df.withColumn(
|
|
"validationIndicatorCol", rand(1) > 0.7
|
|
)
|
|
|
|
# train xgboost classifier model with validation dataset
|
|
xgb_classifier2 = SparkXGBClassifier(max_depth=5, validation_indicator_col="validationIndicatorCol")
|
|
xgb_classifier_model2 = xgb_classifier2.fit(iris_train_spark_df2)
|
|
transformed_iris_test_spark_df2 = xgb_classifier_model2.transform(iris_test_spark_df)
|
|
print(f"classifier2 f1={classifier_evaluator.evaluate(transformed_iris_test_spark_df2)}")
|
|
|
|
spark.stop()
|