sriramch fed665ae8a - training with external memory part 1 of 2 (#4486)
* - training with external memory part 1 of 2
   - this pr focuses on computing the quantiles using multiple gpus on a
     dataset that uses the external cache capabilities
   - there will a follow-up pr soon after this that will support creation
     of histogram indices on large dataset as well
   - both of these changes are required to support training with external memory
   - the sparse pages in dmatrix are taken in batches and the the cut matrices
     are incrementally built
   - also snuck in some (perf) changes related to sketches aggregation amongst multiple
     features across multiple sparse page batches. instead of aggregating the summary
     inside each device and merged later, it is aggregated in-place when the device
     is working on different rows but the same feature
2019-05-30 08:18:34 +12:00
2019-05-27 13:29:28 +12:00
2019-03-13 02:25:51 +08:00
2019-05-27 13:29:28 +12:00
2018-07-10 00:42:15 -07:00
2019-04-25 20:25:43 -07:00
2017-12-01 02:58:13 -08:00
2019-04-08 21:20:15 -07:00

eXtreme Gradient Boosting

Build Status Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%