xgboost/src/metric/rank_metric.cc
2021-10-22 14:13:34 +08:00

572 lines
19 KiB
C++

/*!
* Copyright 2020 XGBoost contributors
*/
// When device ordinal is present, we would want to build the metrics on the GPU. It is *not*
// possible for a valid device ordinal to be present for non GPU builds. However, it is possible
// for an invalid device ordinal to be specified in GPU builds - to train/predict and/or compute
// the metrics on CPU. To accommodate these scenarios, the following is done for the metrics
// accelerated on the GPU.
// - An internal GPU registry holds all the GPU metric types (defined in the .cu file)
// - An instance of the appropriate GPU metric type is created when a device ordinal is present
// - If the creation is successful, the metric computation is done on the device
// - else, it falls back on the CPU
// - The GPU metric types are *only* registered when xgboost is built for GPUs
//
// This is done for 2 reasons:
// - Clear separation of CPU and GPU logic
// - Sorting datasets containing large number of rows is (much) faster when parallel sort
// semantics is used on the CPU. The __gnu_parallel/concurrency primitives needed to perform
// this cannot be used when the translation unit is compiled using the 'nvcc' compiler (as the
// corresponding headers that brings in those function declaration can't be included with CUDA).
// This precludes the CPU and GPU logic to coexist inside a .cu file
#include <rabit/rabit.h>
#include <xgboost/metric.h>
#include <dmlc/registry.h>
#include <cmath>
#include <vector>
#include "xgboost/host_device_vector.h"
#include "../common/math.h"
#include "../common/threading_utils.h"
#include "metric_common.h"
namespace {
using PredIndPair = std::pair<xgboost::bst_float, uint32_t>;
using PredIndPairContainer = std::vector<PredIndPair>;
/*
* Adapter to access instance weights.
*
* - For ranking task, weights are per-group
* - For binary classification task, weights are per-instance
*
* WeightPolicy::GetWeightOfInstance() :
* get weight associated with an individual instance, using index into
* `info.weights`
* WeightPolicy::GetWeightOfSortedRecord() :
* get weight associated with an individual instance, using index into
* sorted records `rec` (in ascending order of predicted labels). `rec` is
* of type PredIndPairContainer
*/
class PerInstanceWeightPolicy {
public:
inline static xgboost::bst_float
GetWeightOfInstance(const xgboost::MetaInfo& info,
unsigned instance_id, unsigned) {
return info.GetWeight(instance_id);
}
inline static xgboost::bst_float
GetWeightOfSortedRecord(const xgboost::MetaInfo& info,
const PredIndPairContainer& rec,
unsigned record_id, unsigned) {
return info.GetWeight(rec[record_id].second);
}
};
class PerGroupWeightPolicy {
public:
inline static xgboost::bst_float
GetWeightOfInstance(const xgboost::MetaInfo& info,
unsigned, unsigned group_id) {
return info.GetWeight(group_id);
}
inline static xgboost::bst_float
GetWeightOfSortedRecord(const xgboost::MetaInfo& info,
const PredIndPairContainer&,
unsigned, unsigned group_id) {
return info.GetWeight(group_id);
}
};
} // anonymous namespace
namespace xgboost {
namespace metric {
// tag the this file, used by force static link later.
DMLC_REGISTRY_FILE_TAG(rank_metric);
/*! \brief AMS: also records best threshold */
struct EvalAMS : public Metric {
public:
explicit EvalAMS(const char* param) {
CHECK(param != nullptr) // NOLINT
<< "AMS must be in format ams@k";
ratio_ = atof(param);
std::ostringstream os;
os << "ams@" << ratio_;
name_ = os.str();
}
bst_float Eval(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
bool distributed) override {
CHECK(!distributed) << "metric AMS do not support distributed evaluation";
using namespace std; // NOLINT(*)
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
PredIndPairContainer rec(ndata);
const auto &h_preds = preds.ConstHostVector();
common::ParallelFor(ndata, [&](bst_omp_uint i) {
rec[i] = std::make_pair(h_preds[i], i);
});
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
auto ntop = static_cast<unsigned>(ratio_ * ndata);
if (ntop == 0) ntop = ndata;
const double br = 10.0;
unsigned thresindex = 0;
double s_tp = 0.0, b_fp = 0.0, tams = 0.0;
const auto& labels = info.labels_.ConstHostVector();
for (unsigned i = 0; i < static_cast<unsigned>(ndata-1) && i < ntop; ++i) {
const unsigned ridx = rec[i].second;
const bst_float wt = info.GetWeight(ridx);
if (labels[ridx] > 0.5f) {
s_tp += wt;
} else {
b_fp += wt;
}
if (rec[i].first != rec[i + 1].first) {
double ams = sqrt(2 * ((s_tp + b_fp + br) * log(1.0 + s_tp / (b_fp + br)) - s_tp));
if (tams < ams) {
thresindex = i;
tams = ams;
}
}
}
if (ntop == ndata) {
LOG(INFO) << "best-ams-ratio=" << static_cast<bst_float>(thresindex) / ndata;
return static_cast<bst_float>(tams);
} else {
return static_cast<bst_float>(
sqrt(2 * ((s_tp + b_fp + br) * log(1.0 + s_tp/(b_fp + br)) - s_tp)));
}
}
const char* Name() const override {
return name_.c_str();
}
private:
std::string name_;
float ratio_;
};
/*! \brief Evaluate rank list */
struct EvalRank : public Metric, public EvalRankConfig {
private:
// This is used to compute the ranking metrics on the GPU - for training jobs that run on the GPU.
std::unique_ptr<xgboost::Metric> rank_gpu_;
public:
bst_float Eval(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
bool distributed) override {
CHECK_EQ(preds.Size(), info.labels_.Size())
<< "label size predict size not match";
// quick consistency when group is not available
std::vector<unsigned> tgptr(2, 0);
tgptr[1] = static_cast<unsigned>(preds.Size());
const auto &gptr = info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
CHECK_NE(gptr.size(), 0U) << "must specify group when constructing rank file";
CHECK_EQ(gptr.back(), preds.Size())
<< "EvalRank: group structure must match number of prediction";
const auto ngroups = static_cast<bst_omp_uint>(gptr.size() - 1);
// sum statistics
double sum_metric = 0.0f;
// Check and see if we have the GPU metric registered in the internal registry
if (tparam_->gpu_id >= 0) {
if (!rank_gpu_) {
rank_gpu_.reset(GPUMetric::CreateGPUMetric(this->Name(), tparam_));
}
if (rank_gpu_) {
sum_metric = rank_gpu_->Eval(preds, info, distributed);
}
}
CHECK(tparam_);
std::vector<double> sum_tloc(tparam_->Threads(), 0.0);
if (!rank_gpu_ || tparam_->gpu_id < 0) {
const auto &labels = info.labels_.ConstHostVector();
const auto &h_preds = preds.ConstHostVector();
dmlc::OMPException exc;
#pragma omp parallel num_threads(tparam_->Threads())
{
exc.Run([&]() {
// each thread takes a local rec
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroups; ++k) {
exc.Run([&]() {
rec.clear();
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
}
sum_tloc[omp_get_thread_num()] += this->EvalGroup(&rec);
});
}
});
}
sum_metric = std::accumulate(sum_tloc.cbegin(), sum_tloc.cend(), 0.0);
exc.Rethrow();
}
if (distributed) {
bst_float dat[2];
dat[0] = static_cast<bst_float>(sum_metric);
dat[1] = static_cast<bst_float>(ngroups);
// approximately estimate the metric using mean
rabit::Allreduce<rabit::op::Sum>(dat, 2);
return dat[0] / dat[1];
} else {
return static_cast<bst_float>(sum_metric) / ngroups;
}
}
const char* Name() const override {
return name.c_str();
}
protected:
explicit EvalRank(const char* name, const char* param) {
using namespace std; // NOLINT(*)
if (param != nullptr) {
std::ostringstream os;
if (sscanf(param, "%u[-]?", &topn) == 1) {
os << name << '@' << param;
this->name = os.str();
} else {
os << name << param;
this->name = os.str();
}
if (param[strlen(param) - 1] == '-') {
minus = true;
}
} else {
this->name = name;
}
}
virtual double EvalGroup(PredIndPairContainer *recptr) const = 0;
};
/*! \brief Precision at N, for both classification and rank */
struct EvalPrecision : public EvalRank {
public:
explicit EvalPrecision(const char* name, const char* param) : EvalRank(name, param) {}
double EvalGroup(PredIndPairContainer *recptr) const override {
PredIndPairContainer &rec(*recptr);
// calculate Precision
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
unsigned nhit = 0;
for (size_t j = 0; j < rec.size() && j < this->topn; ++j) {
nhit += (rec[j].second != 0);
}
return static_cast<double>(nhit) / this->topn;
}
};
/*! \brief NDCG: Normalized Discounted Cumulative Gain at N */
struct EvalNDCG : public EvalRank {
private:
double CalcDCG(const PredIndPairContainer &rec) const {
double sumdcg = 0.0;
for (size_t i = 0; i < rec.size() && i < this->topn; ++i) {
const unsigned rel = rec[i].second;
if (rel != 0) {
sumdcg += ((1 << rel) - 1) / std::log2(i + 2.0);
}
}
return sumdcg;
}
public:
explicit EvalNDCG(const char* name, const char* param) : EvalRank(name, param) {}
double EvalGroup(PredIndPairContainer *recptr) const override {
PredIndPairContainer &rec(*recptr);
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
double dcg = CalcDCG(rec);
std::stable_sort(rec.begin(), rec.end(), common::CmpSecond);
double idcg = CalcDCG(rec);
if (idcg == 0.0f) {
if (this->minus) {
return 0.0f;
} else {
return 1.0f;
}
}
return dcg/idcg;
}
};
/*! \brief Mean Average Precision at N, for both classification and rank */
struct EvalMAP : public EvalRank {
public:
explicit EvalMAP(const char* name, const char* param) : EvalRank(name, param) {}
double EvalGroup(PredIndPairContainer *recptr) const override {
PredIndPairContainer &rec(*recptr);
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
unsigned nhits = 0;
double sumap = 0.0;
for (size_t i = 0; i < rec.size(); ++i) {
if (rec[i].second != 0) {
nhits += 1;
if (i < this->topn) {
sumap += static_cast<double>(nhits) / (i + 1);
}
}
}
if (nhits != 0) {
sumap /= nhits;
return sumap;
} else {
if (this->minus) {
return 0.0f;
} else {
return 1.0f;
}
}
}
};
/*! \brief Cox: Partial likelihood of the Cox proportional hazards model */
struct EvalCox : public Metric {
public:
EvalCox() = default;
bst_float Eval(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
bool distributed) override {
CHECK(!distributed) << "Cox metric does not support distributed evaluation";
using namespace std; // NOLINT(*)
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
const auto &label_order = info.LabelAbsSort();
// pre-compute a sum for the denominator
double exp_p_sum = 0; // we use double because we might need the precision with large datasets
const auto &h_preds = preds.ConstHostVector();
for (omp_ulong i = 0; i < ndata; ++i) {
exp_p_sum += h_preds[i];
}
double out = 0;
double accumulated_sum = 0;
bst_omp_uint num_events = 0;
const auto& labels = info.labels_.ConstHostVector();
for (bst_omp_uint i = 0; i < ndata; ++i) {
const size_t ind = label_order[i];
const auto label = labels[ind];
if (label > 0) {
out -= log(h_preds[ind]) - log(exp_p_sum);
++num_events;
}
// only update the denominator after we move forward in time (labels are sorted)
accumulated_sum += h_preds[ind];
if (i == ndata - 1 || std::abs(label) < std::abs(labels[label_order[i + 1]])) {
exp_p_sum -= accumulated_sum;
accumulated_sum = 0;
}
}
return out/num_events; // normalize by the number of events
}
const char* Name() const override {
return "cox-nloglik";
}
};
/*! \brief Area Under PR Curve, for both classification and rank computed on CPU */
struct EvalAucPR : public Metric {
// implementation of AUC-PR for weighted data
// translated from PRROC R Package
// see https://doi.org/10.1371/journal.pone.0092209
private:
// This is used to compute the AUCPR metrics on the GPU - for ranking tasks and
// for training jobs that run on the GPU.
std::unique_ptr<xgboost::Metric> aucpr_gpu_;
template <typename WeightPolicy>
bst_float Eval(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
bool distributed,
const std::vector<unsigned> &gptr) {
const auto ngroups = static_cast<bst_omp_uint>(gptr.size() - 1);
// sum of all AUC's across all query groups
double sum_auc = 0.0;
int auc_error = 0;
const auto &h_labels = info.labels_.ConstHostVector();
const auto &h_preds = preds.ConstHostVector();
dmlc::OMPException exc;
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
{
exc.Run([&]() {
// Each thread works on a distinct group and sorts the predictions in that group
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
exc.Run([&]() {
double total_pos = 0.0;
double total_neg = 0.0;
// Same thread can work on multiple groups one after another; hence, resize
// the predictions array based on the current group
rec.resize(gptr[group_id + 1] - gptr[group_id]);
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
if (!omp_in_parallel()) // NOLINT
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
exc.Run([&]() {
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
total_pos += wt * h_labels[j];
total_neg += wt * (1.0f - h_labels[j]);
rec[j - gptr[group_id]] = {h_preds[j], j};
});
}
// we need pos > 0 && neg > 0
if (total_pos <= 0.0 || total_neg <= 0.0) {
auc_error += 1;
return;
}
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
// calculate AUC
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
for (size_t j = 0; j < rec.size(); ++j) {
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
tp += wt * h_labels[rec[j].second];
fp += wt * (1.0f - h_labels[rec[j].second]);
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) ||
j == rec.size() - 1) {
if (tp == prevtp) {
a = 1.0;
b = 0.0;
} else {
h = (fp - prevfp) / (tp - prevtp);
a = 1.0 + h;
b = (prevfp - h * prevtp) / total_pos;
}
if (0.0 != b) {
sum_auc += (tp / total_pos - prevtp / total_pos -
b / a * (std::log(a * tp / total_pos + b) -
std::log(a * prevtp / total_pos + b))) / a;
} else {
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
}
prevtp = tp;
prevfp = fp;
}
}
// sanity check
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
CHECK(!auc_error) << "AUC-PR: error in calculation";
}
});
}
});
}
exc.Rethrow();
// Report average AUC-PR across all groups
// In distributed mode, workers which only contains pos or neg samples
// will be ignored when aggregate AUC-PR.
bst_float dat[2] = {0.0f, 0.0f};
if (auc_error < static_cast<int>(ngroups)) {
dat[0] = static_cast<bst_float>(sum_auc);
dat[1] = static_cast<bst_float>(static_cast<int>(ngroups) - auc_error);
}
if (distributed) {
rabit::Allreduce<rabit::op::Sum>(dat, 2);
}
CHECK_GT(dat[1], 0.0f)
<< "AUC-PR: the dataset only contains pos or neg samples";
CHECK_LE(dat[0], dat[1]) << "AUC-PR: AUC > 1.0";
return dat[0] / dat[1];
}
public:
bst_float Eval(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
bool distributed) override {
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels_.Size())
<< "label size predict size not match";
std::vector<unsigned> tgptr(2, 0);
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
const auto &gptr = info.group_ptr_.empty() ? tgptr : info.group_ptr_;
CHECK_EQ(gptr.back(), info.labels_.Size())
<< "EvalAucPR: group structure must match number of prediction";
// For ranking task, weights are per-group
// For binary classification task, weights are per-instance
const bool is_ranking_task =
!info.group_ptr_.empty() && info.weights_.Size() != info.num_row_;
// Check if we have a GPU assignment; else, revert back to CPU
if (tparam_->gpu_id >= 0 && is_ranking_task) {
if (!aucpr_gpu_) {
// Check and see if we have the GPU metric registered in the internal registry
aucpr_gpu_.reset(GPUMetric::CreateGPUMetric(this->Name(), tparam_));
}
if (aucpr_gpu_) {
return aucpr_gpu_->Eval(preds, info, distributed);
}
}
if (is_ranking_task) {
return Eval<PerGroupWeightPolicy>(preds, info, distributed, gptr);
} else {
return Eval<PerInstanceWeightPolicy>(preds, info, distributed, gptr);
}
}
const char *Name() const override { return "aucpr"; }
};
XGBOOST_REGISTER_METRIC(AMS, "ams")
.describe("AMS metric for higgs.")
.set_body([](const char* param) { return new EvalAMS(param); });
XGBOOST_REGISTER_METRIC(AucPR, "aucpr")
.describe("Area under PR curve for both classification and rank.")
.set_body([](const char*) { return new EvalAucPR(); });
XGBOOST_REGISTER_METRIC(Precision, "pre")
.describe("precision@k for rank.")
.set_body([](const char* param) { return new EvalPrecision("pre", param); });
XGBOOST_REGISTER_METRIC(NDCG, "ndcg")
.describe("ndcg@k for rank.")
.set_body([](const char* param) { return new EvalNDCG("ndcg", param); });
XGBOOST_REGISTER_METRIC(MAP, "map")
.describe("map@k for rank.")
.set_body([](const char* param) { return new EvalMAP("map", param); });
XGBOOST_REGISTER_METRIC(Cox, "cox-nloglik")
.describe("Negative log partial likelihood of Cox proportional hazards model.")
.set_body([](const char*) { return new EvalCox(); });
} // namespace metric
} // namespace xgboost