230 lines
8.3 KiB
C++
230 lines
8.3 KiB
C++
/**
|
|
* Copyright 2021-2024, XGBoost contributors.
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "../../../src/tree/common_row_partitioner.h"
|
|
#include "../../../src/tree/param.h" // for TrainParam
|
|
#include "../collective/test_worker.h" // for TestDistributedGlobal
|
|
#include "../helpers.h"
|
|
#include "test_column_split.h" // for TestColumnSplit
|
|
#include "test_partitioner.h"
|
|
#include "xgboost/tree_model.h" // for RegTree
|
|
|
|
namespace xgboost::tree {
|
|
namespace {
|
|
std::vector<float> GenerateHess(size_t n_samples) {
|
|
auto grad = GenerateRandomGradients(n_samples);
|
|
std::vector<float> hess(grad.Size());
|
|
std::transform(grad.HostVector().cbegin(), grad.HostVector().cend(), hess.begin(),
|
|
[](auto gpair) { return gpair.GetHess(); });
|
|
return hess;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
TEST(Approx, Partitioner) {
|
|
size_t n_samples = 1024, n_features = 1, base_rowid = 0;
|
|
Context ctx;
|
|
ctx.InitAllowUnknown(Args{});
|
|
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
|
|
ASSERT_EQ(partitioner.base_rowid, base_rowid);
|
|
ASSERT_EQ(partitioner.Size(), 1);
|
|
ASSERT_EQ(partitioner.Partitions()[0].Size(), n_samples);
|
|
|
|
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
|
|
auto hess = GenerateHess(n_samples);
|
|
std::vector<CPUExpandEntry> candidates{{0, 0}};
|
|
candidates.front().split.loss_chg = 0.4;
|
|
|
|
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>(&ctx, {64, hess, true})) {
|
|
bst_feature_t const split_ind = 0;
|
|
{
|
|
auto min_value = page.cut.MinValues()[split_ind];
|
|
RegTree tree;
|
|
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
|
|
GetSplit(&tree, min_value, &candidates);
|
|
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
|
|
ASSERT_EQ(partitioner.Size(), 3);
|
|
ASSERT_EQ(partitioner[1].Size(), 0);
|
|
ASSERT_EQ(partitioner[2].Size(), n_samples);
|
|
}
|
|
{
|
|
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, false};
|
|
auto ptr = page.cut.Ptrs()[split_ind + 1];
|
|
float split_value = page.cut.Values().at(ptr / 2);
|
|
RegTree tree;
|
|
GetSplit(&tree, split_value, &candidates);
|
|
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
|
|
|
|
{
|
|
auto left_nidx = tree[RegTree::kRoot].LeftChild();
|
|
auto const& elem = partitioner[left_nidx];
|
|
ASSERT_LT(elem.Size(), n_samples);
|
|
ASSERT_GT(elem.Size(), 1);
|
|
for (auto& it : elem) {
|
|
auto value = page.cut.Values().at(page.index[it]);
|
|
ASSERT_LE(value, split_value);
|
|
}
|
|
}
|
|
{
|
|
auto right_nidx = tree[RegTree::kRoot].RightChild();
|
|
auto const& elem = partitioner[right_nidx];
|
|
for (auto& it : elem) {
|
|
auto value = page.cut.Values().at(page.index[it]);
|
|
ASSERT_GT(value, split_value) << it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(Approx, InteractionConstraint) {
|
|
auto constexpr kRows = 32;
|
|
auto constexpr kCols = 16;
|
|
auto p_dmat = GenerateCatDMatrix(kRows, kCols, 0.6f, false);
|
|
Context ctx;
|
|
|
|
linalg::Matrix<GradientPair> gpair({kRows}, ctx.Device());
|
|
gpair.Data()->Copy(GenerateRandomGradients(kRows));
|
|
|
|
ObjInfo task{ObjInfo::kRegression};
|
|
{
|
|
// With constraints
|
|
RegTree tree{1, kCols};
|
|
|
|
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
|
|
TrainParam param;
|
|
param.UpdateAllowUnknown(
|
|
Args{{"interaction_constraints", "[[0, 1]]"}, {"num_feature", std::to_string(kCols)}});
|
|
std::vector<HostDeviceVector<bst_node_t>> position(1);
|
|
updater->Configure(Args{});
|
|
updater->Update(¶m, &gpair, p_dmat.get(), position, {&tree});
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 4);
|
|
ASSERT_EQ(tree[0].SplitIndex(), 1);
|
|
|
|
ASSERT_EQ(tree[tree[0].LeftChild()].SplitIndex(), 0);
|
|
ASSERT_EQ(tree[tree[0].RightChild()].SplitIndex(), 0);
|
|
}
|
|
{
|
|
// Without constraints
|
|
RegTree tree{1u, kCols};
|
|
|
|
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
|
|
std::vector<HostDeviceVector<bst_node_t>> position(1);
|
|
TrainParam param;
|
|
param.Init(Args{});
|
|
updater->Configure(Args{});
|
|
updater->Update(¶m, &gpair, p_dmat.get(), position, {&tree});
|
|
|
|
ASSERT_EQ(tree.NumExtraNodes(), 10);
|
|
ASSERT_EQ(tree[0].SplitIndex(), 1);
|
|
|
|
ASSERT_NE(tree[tree[0].LeftChild()].SplitIndex(), 0);
|
|
ASSERT_NE(tree[tree[0].RightChild()].SplitIndex(), 0);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
void TestColumnSplitPartitioner(size_t n_samples, size_t base_rowid, std::shared_ptr<DMatrix> Xy,
|
|
std::vector<float>* hess, float min_value, float mid_value,
|
|
CommonRowPartitioner const& expected_mid_partitioner) {
|
|
auto dmat =
|
|
std::unique_ptr<DMatrix>{Xy->SliceCol(collective::GetWorldSize(), collective::GetRank())};
|
|
std::vector<CPUExpandEntry> candidates{{0, 0}};
|
|
candidates.front().split.loss_chg = 0.4;
|
|
|
|
Context ctx;
|
|
ctx.InitAllowUnknown(Args{});
|
|
for (auto const& page : dmat->GetBatches<GHistIndexMatrix>(&ctx, {64, *hess, true})) {
|
|
{
|
|
RegTree tree;
|
|
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
|
|
GetSplit(&tree, min_value, &candidates);
|
|
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
|
|
ASSERT_EQ(partitioner.Size(), 3);
|
|
ASSERT_EQ(partitioner[1].Size(), 0);
|
|
ASSERT_EQ(partitioner[2].Size(), n_samples);
|
|
}
|
|
{
|
|
CommonRowPartitioner partitioner{&ctx, n_samples, base_rowid, true};
|
|
RegTree tree;
|
|
GetSplit(&tree, mid_value, &candidates);
|
|
partitioner.UpdatePosition(&ctx, page, candidates, &tree);
|
|
{
|
|
auto left_nidx = tree[RegTree::kRoot].LeftChild();
|
|
auto const& elem = partitioner[left_nidx];
|
|
ASSERT_LT(elem.Size(), n_samples);
|
|
ASSERT_GT(elem.Size(), 1);
|
|
auto const& expected_elem = expected_mid_partitioner[left_nidx];
|
|
ASSERT_EQ(elem.Size(), expected_elem.Size());
|
|
for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) {
|
|
ASSERT_EQ(*it, *eit);
|
|
}
|
|
}
|
|
{
|
|
auto right_nidx = tree[RegTree::kRoot].RightChild();
|
|
auto const& elem = partitioner[right_nidx];
|
|
auto const& expected_elem = expected_mid_partitioner[right_nidx];
|
|
ASSERT_EQ(elem.Size(), expected_elem.Size());
|
|
for (auto it = elem.begin(), eit = expected_elem.begin(); it != elem.end(); ++it, ++eit) {
|
|
ASSERT_EQ(*it, *eit);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // anonymous namespace
|
|
|
|
TEST(Approx, PartitionerColSplit) {
|
|
size_t n_samples = 1024, n_features = 16, base_rowid = 0;
|
|
auto const Xy = RandomDataGenerator{n_samples, n_features, 0}.GenerateDMatrix(true);
|
|
auto hess = GenerateHess(n_samples);
|
|
std::vector<CPUExpandEntry> candidates{{0, 0}};
|
|
candidates.front().split.loss_chg = 0.4;
|
|
|
|
float min_value, mid_value;
|
|
Context ctx;
|
|
ctx.InitAllowUnknown(Args{});
|
|
CommonRowPartitioner mid_partitioner{&ctx, n_samples, base_rowid, false};
|
|
for (auto const& page : Xy->GetBatches<GHistIndexMatrix>(&ctx, {64, hess, true})) {
|
|
bst_feature_t const split_ind = 0;
|
|
min_value = page.cut.MinValues()[split_ind];
|
|
|
|
auto ptr = page.cut.Ptrs()[split_ind + 1];
|
|
mid_value = page.cut.Values().at(ptr / 2);
|
|
RegTree tree;
|
|
GetSplit(&tree, mid_value, &candidates);
|
|
mid_partitioner.UpdatePosition(&ctx, page, candidates, &tree);
|
|
}
|
|
|
|
auto constexpr kWorkers = 4;
|
|
collective::TestDistributedGlobal(kWorkers, [&] {
|
|
TestColumnSplitPartitioner(n_samples, base_rowid, Xy, &hess, min_value, mid_value,
|
|
mid_partitioner);
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
class TestApproxColSplit : public ::testing::TestWithParam<std::tuple<bool, float>> {
|
|
public:
|
|
void Run() {
|
|
auto [categorical, sparsity] = GetParam();
|
|
TestColumnSplit(1u, categorical, "grow_histmaker", sparsity);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
TEST_P(TestApproxColSplit, Basic) { this->Run(); }
|
|
|
|
INSTANTIATE_TEST_SUITE_P(ColumnSplit, TestApproxColSplit, ::testing::ValuesIn([]() {
|
|
std::vector<std::tuple<bool, float>> params;
|
|
for (auto categorical : {true, false}) {
|
|
for (auto sparsity : {0.0f, 0.6f}) {
|
|
params.emplace_back(categorical, sparsity);
|
|
}
|
|
}
|
|
return params;
|
|
}()));
|
|
} // namespace xgboost::tree
|