* Added plugin with DPC++-based predictor and objective function * Update CMakeLists.txt * Update regression_obj_oneapi.cc * Added README.md for OneAPI plugin * Added OneAPI predictor support to gbtree * Update README.md * Merged kernels in gradient computation. Enabled multiple loss functions with DPC++ backend * Aligned plugin CMake files with latest master changes. Fixed whitespace typos * Removed debug output * [CI] Make oneapi_plugin a CMake target * Added tests for OneAPI plugin for predictor and obj. functions * Temporarily switched to default selector for device dispacthing in OneAPI plugin to enable execution in environments without gpus * Updated readme file. * Fixed USM usage in predictor * Removed workaround with explicit templated names for DPC++ kernels * Fixed warnings in plugin tests * Fix CMake build of gtest Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
449 lines
16 KiB
C++
Executable File
449 lines
16 KiB
C++
Executable File
/*!
|
|
* Copyright by Contributors 2017-2020
|
|
*/
|
|
#include <cstddef>
|
|
#include <limits>
|
|
#include <mutex>
|
|
|
|
#include "xgboost/base.h"
|
|
#include "xgboost/data.h"
|
|
#include "xgboost/predictor.h"
|
|
#include "xgboost/tree_model.h"
|
|
#include "xgboost/tree_updater.h"
|
|
#include "xgboost/logging.h"
|
|
#include "xgboost/host_device_vector.h"
|
|
|
|
#include "../../src/data/adapter.h"
|
|
#include "../../src/common/math.h"
|
|
#include "../../src/gbm/gbtree_model.h"
|
|
|
|
#include "CL/sycl.hpp"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(predictor_oneapi);
|
|
|
|
/*! \brief Element from a sparse vector */
|
|
struct EntryOneAPI {
|
|
/*! \brief feature index */
|
|
bst_feature_t index;
|
|
/*! \brief feature value */
|
|
bst_float fvalue;
|
|
/*! \brief default constructor */
|
|
EntryOneAPI() = default;
|
|
/*!
|
|
* \brief constructor with index and value
|
|
* \param index The feature or row index.
|
|
* \param fvalue The feature value.
|
|
*/
|
|
EntryOneAPI(bst_feature_t index, bst_float fvalue) : index(index), fvalue(fvalue) {}
|
|
|
|
EntryOneAPI(const Entry& entry) : index(entry.index), fvalue(entry.fvalue) {}
|
|
|
|
/*! \brief reversely compare feature values */
|
|
inline static bool CmpValue(const EntryOneAPI& a, const EntryOneAPI& b) {
|
|
return a.fvalue < b.fvalue;
|
|
}
|
|
inline bool operator==(const EntryOneAPI& other) const {
|
|
return (this->index == other.index && this->fvalue == other.fvalue);
|
|
}
|
|
};
|
|
|
|
struct DeviceMatrixOneAPI {
|
|
DMatrix* p_mat; // Pointer to the original matrix on the host
|
|
cl::sycl::queue qu_;
|
|
size_t* row_ptr;
|
|
size_t row_ptr_size;
|
|
EntryOneAPI* data;
|
|
|
|
DeviceMatrixOneAPI(DMatrix* dmat, cl::sycl::queue qu) : p_mat(dmat), qu_(qu) {
|
|
size_t num_row = 0;
|
|
size_t num_nonzero = 0;
|
|
for (auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
const auto& data_vec = batch.data.HostVector();
|
|
const auto& offset_vec = batch.offset.HostVector();
|
|
num_nonzero += data_vec.size();
|
|
num_row += batch.Size();
|
|
}
|
|
|
|
row_ptr = cl::sycl::malloc_shared<size_t>(num_row + 1, qu_);
|
|
data = cl::sycl::malloc_shared<EntryOneAPI>(num_nonzero, qu_);
|
|
|
|
size_t data_offset = 0;
|
|
for (auto &batch : dmat->GetBatches<SparsePage>()) {
|
|
const auto& data_vec = batch.data.HostVector();
|
|
const auto& offset_vec = batch.offset.HostVector();
|
|
size_t batch_size = batch.Size();
|
|
if (batch_size > 0) {
|
|
std::copy(offset_vec.data(), offset_vec.data() + batch_size,
|
|
row_ptr + batch.base_rowid);
|
|
if (batch.base_rowid > 0) {
|
|
for(size_t i = 0; i < batch_size; i++)
|
|
row_ptr[i + batch.base_rowid] += batch.base_rowid;
|
|
}
|
|
std::copy(data_vec.data(), data_vec.data() + offset_vec[batch_size],
|
|
data + data_offset);
|
|
data_offset += offset_vec[batch_size];
|
|
}
|
|
}
|
|
row_ptr[num_row] = data_offset;
|
|
row_ptr_size = num_row + 1;
|
|
}
|
|
|
|
~DeviceMatrixOneAPI() {
|
|
if (row_ptr) {
|
|
cl::sycl::free(row_ptr, qu_);
|
|
}
|
|
if (data) {
|
|
cl::sycl::free(data, qu_);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct DeviceNodeOneAPI {
|
|
DeviceNodeOneAPI()
|
|
: fidx(-1), left_child_idx(-1), right_child_idx(-1) {}
|
|
|
|
union NodeValue {
|
|
float leaf_weight;
|
|
float fvalue;
|
|
};
|
|
|
|
int fidx;
|
|
int left_child_idx;
|
|
int right_child_idx;
|
|
NodeValue val;
|
|
|
|
DeviceNodeOneAPI(const RegTree::Node& n) { // NOLINT
|
|
this->left_child_idx = n.LeftChild();
|
|
this->right_child_idx = n.RightChild();
|
|
this->fidx = n.SplitIndex();
|
|
if (n.DefaultLeft()) {
|
|
fidx |= (1U << 31);
|
|
}
|
|
|
|
if (n.IsLeaf()) {
|
|
this->val.leaf_weight = n.LeafValue();
|
|
} else {
|
|
this->val.fvalue = n.SplitCond();
|
|
}
|
|
}
|
|
|
|
bool IsLeaf() const { return left_child_idx == -1; }
|
|
|
|
int GetFidx() const { return fidx & ((1U << 31) - 1U); }
|
|
|
|
bool MissingLeft() const { return (fidx >> 31) != 0; }
|
|
|
|
int MissingIdx() const {
|
|
if (MissingLeft()) {
|
|
return this->left_child_idx;
|
|
} else {
|
|
return this->right_child_idx;
|
|
}
|
|
}
|
|
|
|
float GetFvalue() const { return val.fvalue; }
|
|
|
|
float GetWeight() const { return val.leaf_weight; }
|
|
};
|
|
|
|
class DeviceModelOneAPI {
|
|
public:
|
|
cl::sycl::queue qu_;
|
|
DeviceNodeOneAPI* nodes;
|
|
size_t* tree_segments;
|
|
int* tree_group;
|
|
size_t tree_beg_;
|
|
size_t tree_end_;
|
|
int num_group;
|
|
|
|
DeviceModelOneAPI() : nodes(nullptr), tree_segments(nullptr), tree_group(nullptr) {}
|
|
|
|
~DeviceModelOneAPI() {
|
|
Reset();
|
|
}
|
|
|
|
void Reset() {
|
|
if (nodes)
|
|
cl::sycl::free(nodes, qu_);
|
|
if (tree_segments)
|
|
cl::sycl::free(tree_segments, qu_);
|
|
if (tree_group)
|
|
cl::sycl::free(tree_group, qu_);
|
|
}
|
|
|
|
void Init(const gbm::GBTreeModel& model, size_t tree_begin, size_t tree_end, cl::sycl::queue qu) {
|
|
qu_ = qu;
|
|
CHECK_EQ(model.param.size_leaf_vector, 0);
|
|
Reset();
|
|
|
|
tree_segments = cl::sycl::malloc_shared<size_t>((tree_end - tree_begin) + 1, qu_);
|
|
int sum = 0;
|
|
tree_segments[0] = sum;
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
sum += model.trees[tree_idx]->GetNodes().size();
|
|
tree_segments[tree_idx - tree_begin + 1] = sum;
|
|
}
|
|
|
|
nodes = cl::sycl::malloc_shared<DeviceNodeOneAPI>(sum, qu_);
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
auto& src_nodes = model.trees[tree_idx]->GetNodes();
|
|
for (size_t node_idx = 0; node_idx < src_nodes.size(); node_idx++)
|
|
nodes[node_idx + tree_segments[tree_idx - tree_begin]] = src_nodes[node_idx];
|
|
}
|
|
|
|
tree_group = cl::sycl::malloc_shared<int>(model.tree_info.size(), qu_);
|
|
for (size_t tree_idx = 0; tree_idx < model.tree_info.size(); tree_idx++)
|
|
tree_group[tree_idx] = model.tree_info[tree_idx];
|
|
|
|
tree_beg_ = tree_begin;
|
|
tree_end_ = tree_end;
|
|
num_group = model.learner_model_param->num_output_group;
|
|
}
|
|
};
|
|
|
|
float GetFvalue(int ridx, int fidx, EntryOneAPI* data, size_t* row_ptr, bool& is_missing) {
|
|
// Binary search
|
|
auto begin_ptr = data + row_ptr[ridx];
|
|
auto end_ptr = data + row_ptr[ridx + 1];
|
|
EntryOneAPI* previous_middle = nullptr;
|
|
while (end_ptr != begin_ptr) {
|
|
auto middle = begin_ptr + (end_ptr - begin_ptr) / 2;
|
|
if (middle == previous_middle) {
|
|
break;
|
|
} else {
|
|
previous_middle = middle;
|
|
}
|
|
|
|
if (middle->index == fidx) {
|
|
is_missing = false;
|
|
return middle->fvalue;
|
|
} else if (middle->index < fidx) {
|
|
begin_ptr = middle;
|
|
} else {
|
|
end_ptr = middle;
|
|
}
|
|
}
|
|
is_missing = true;
|
|
return 0.0;
|
|
}
|
|
|
|
float GetLeafWeight(int ridx, const DeviceNodeOneAPI* tree, EntryOneAPI* data, size_t* row_ptr) {
|
|
DeviceNodeOneAPI n = tree[0];
|
|
int node_id = 0;
|
|
bool is_missing;
|
|
while (!n.IsLeaf()) {
|
|
float fvalue = GetFvalue(ridx, n.GetFidx(), data, row_ptr, is_missing);
|
|
// Missing value
|
|
if (is_missing) {
|
|
n = tree[n.MissingIdx()];
|
|
} else {
|
|
if (fvalue < n.GetFvalue()) {
|
|
node_id = n.left_child_idx;
|
|
n = tree[n.left_child_idx];
|
|
} else {
|
|
node_id = n.right_child_idx;
|
|
n = tree[n.right_child_idx];
|
|
}
|
|
}
|
|
}
|
|
return n.GetWeight();
|
|
}
|
|
|
|
class PredictorOneAPI : public Predictor {
|
|
protected:
|
|
void InitOutPredictions(const MetaInfo& info,
|
|
HostDeviceVector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model) const {
|
|
CHECK_NE(model.learner_model_param->num_output_group, 0);
|
|
size_t n = model.learner_model_param->num_output_group * info.num_row_;
|
|
const auto& base_margin = info.base_margin_.HostVector();
|
|
out_preds->Resize(n);
|
|
std::vector<bst_float>& out_preds_h = out_preds->HostVector();
|
|
if (base_margin.size() == n) {
|
|
CHECK_EQ(out_preds->Size(), n);
|
|
std::copy(base_margin.begin(), base_margin.end(), out_preds_h.begin());
|
|
} else {
|
|
if (!base_margin.empty()) {
|
|
std::ostringstream oss;
|
|
oss << "Ignoring the base margin, since it has incorrect length. "
|
|
<< "The base margin must be an array of length ";
|
|
if (model.learner_model_param->num_output_group > 1) {
|
|
oss << "[num_class] * [number of data points], i.e. "
|
|
<< model.learner_model_param->num_output_group << " * " << info.num_row_
|
|
<< " = " << n << ". ";
|
|
} else {
|
|
oss << "[number of data points], i.e. " << info.num_row_ << ". ";
|
|
}
|
|
oss << "Instead, all data points will use "
|
|
<< "base_score = " << model.learner_model_param->base_score;
|
|
LOG(WARNING) << oss.str();
|
|
}
|
|
std::fill(out_preds_h.begin(), out_preds_h.end(),
|
|
model.learner_model_param->base_score);
|
|
}
|
|
}
|
|
|
|
void DevicePredictInternal(DeviceMatrixOneAPI* dmat, HostDeviceVector<float>* out_preds,
|
|
const gbm::GBTreeModel& model, size_t tree_begin,
|
|
size_t tree_end) {
|
|
if (tree_end - tree_begin == 0) {
|
|
return;
|
|
}
|
|
model_.Init(model, tree_begin, tree_end, qu_);
|
|
|
|
auto& out_preds_vec = out_preds->HostVector();
|
|
|
|
DeviceNodeOneAPI* nodes = model_.nodes;
|
|
cl::sycl::buffer<float, 1> out_preds_buf(out_preds_vec.data(), out_preds_vec.size());
|
|
size_t* tree_segments = model_.tree_segments;
|
|
int* tree_group = model_.tree_group;
|
|
size_t* row_ptr = dmat->row_ptr;
|
|
EntryOneAPI* data = dmat->data;
|
|
int num_features = dmat->p_mat->Info().num_col_;
|
|
int num_rows = dmat->row_ptr_size - 1;
|
|
int num_group = model.learner_model_param->num_output_group;
|
|
|
|
qu_.submit([&](cl::sycl::handler& cgh) {
|
|
auto out_predictions = out_preds_buf.get_access<cl::sycl::access::mode::read_write>(cgh);
|
|
cgh.parallel_for<class PredictInternal>(cl::sycl::range<1>(num_rows), [=](cl::sycl::id<1> pid) {
|
|
int global_idx = pid[0];
|
|
if (global_idx >= num_rows) return;
|
|
if (num_group == 1) {
|
|
float sum = 0.0;
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
const DeviceNodeOneAPI* tree = nodes + tree_segments[tree_idx - tree_begin];
|
|
sum += GetLeafWeight(global_idx, tree, data, row_ptr);
|
|
}
|
|
out_predictions[global_idx] += sum;
|
|
} else {
|
|
for (int tree_idx = tree_begin; tree_idx < tree_end; tree_idx++) {
|
|
const DeviceNodeOneAPI* tree = nodes + tree_segments[tree_idx - tree_begin];
|
|
int out_prediction_idx = global_idx * num_group + tree_group[tree_idx];
|
|
out_predictions[out_prediction_idx] += GetLeafWeight(global_idx, tree, data, row_ptr);
|
|
}
|
|
}
|
|
});
|
|
}).wait();
|
|
}
|
|
|
|
public:
|
|
explicit PredictorOneAPI(GenericParameter const* generic_param) :
|
|
Predictor::Predictor{generic_param}, cpu_predictor(Predictor::Create("cpu_predictor", generic_param)) {
|
|
cl::sycl::default_selector selector;
|
|
qu_ = cl::sycl::queue(selector);
|
|
}
|
|
|
|
// ntree_limit is a very problematic parameter, as it's ambiguous in the context of
|
|
// multi-output and forest. Same problem exists for tree_begin
|
|
void PredictBatch(DMatrix* dmat, PredictionCacheEntry* predts,
|
|
const gbm::GBTreeModel& model, int tree_begin,
|
|
uint32_t const ntree_limit = 0) override {
|
|
if (this->device_matrix_cache_.find(dmat) ==
|
|
this->device_matrix_cache_.end()) {
|
|
this->device_matrix_cache_.emplace(
|
|
dmat, std::unique_ptr<DeviceMatrixOneAPI>(
|
|
new DeviceMatrixOneAPI(dmat, qu_)));
|
|
}
|
|
DeviceMatrixOneAPI* device_matrix = device_matrix_cache_.find(dmat)->second.get();
|
|
|
|
// tree_begin is not used, right now we just enforce it to be 0.
|
|
CHECK_EQ(tree_begin, 0);
|
|
auto* out_preds = &predts->predictions;
|
|
CHECK_GE(predts->version, tree_begin);
|
|
if (out_preds->Size() == 0 && dmat->Info().num_row_ != 0) {
|
|
CHECK_EQ(predts->version, 0);
|
|
}
|
|
if (predts->version == 0) {
|
|
// out_preds->Size() can be non-zero as it's initialized here before any tree is
|
|
// built at the 0^th iterator.
|
|
this->InitOutPredictions(dmat->Info(), out_preds, model);
|
|
}
|
|
|
|
uint32_t const output_groups = model.learner_model_param->num_output_group;
|
|
CHECK_NE(output_groups, 0);
|
|
// Right now we just assume ntree_limit provided by users means number of tree layers
|
|
// in the context of multi-output model
|
|
uint32_t real_ntree_limit = ntree_limit * output_groups;
|
|
if (real_ntree_limit == 0 || real_ntree_limit > model.trees.size()) {
|
|
real_ntree_limit = static_cast<uint32_t>(model.trees.size());
|
|
}
|
|
|
|
uint32_t const end_version = (tree_begin + real_ntree_limit) / output_groups;
|
|
// When users have provided ntree_limit, end_version can be lesser, cache is violated
|
|
if (predts->version > end_version) {
|
|
CHECK_NE(ntree_limit, 0);
|
|
this->InitOutPredictions(dmat->Info(), out_preds, model);
|
|
predts->version = 0;
|
|
}
|
|
uint32_t const beg_version = predts->version;
|
|
CHECK_LE(beg_version, end_version);
|
|
|
|
if (beg_version < end_version) {
|
|
DevicePredictInternal(device_matrix, out_preds, model,
|
|
beg_version * output_groups,
|
|
end_version * output_groups);
|
|
}
|
|
|
|
// delta means {size of forest} * {number of newly accumulated layers}
|
|
uint32_t delta = end_version - beg_version;
|
|
CHECK_LE(delta, model.trees.size());
|
|
predts->Update(delta);
|
|
|
|
CHECK(out_preds->Size() == output_groups * dmat->Info().num_row_ ||
|
|
out_preds->Size() == dmat->Info().num_row_);
|
|
}
|
|
|
|
void InplacePredict(dmlc::any const &x, const gbm::GBTreeModel &model,
|
|
float missing, PredictionCacheEntry *out_preds,
|
|
uint32_t tree_begin, unsigned tree_end) const override {
|
|
cpu_predictor->InplacePredict(x, model, missing, out_preds, tree_begin, tree_end);
|
|
}
|
|
|
|
void PredictInstance(const SparsePage::Inst& inst,
|
|
std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) override {
|
|
cpu_predictor->PredictInstance(inst, out_preds, model, ntree_limit);
|
|
}
|
|
|
|
void PredictLeaf(DMatrix* p_fmat, std::vector<bst_float>* out_preds,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit) override {
|
|
cpu_predictor->PredictLeaf(p_fmat, out_preds, model, ntree_limit);
|
|
}
|
|
|
|
void PredictContribution(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
|
|
const gbm::GBTreeModel& model, uint32_t ntree_limit,
|
|
std::vector<bst_float>* tree_weights,
|
|
bool approximate, int condition,
|
|
unsigned condition_feature) override {
|
|
cpu_predictor->PredictContribution(p_fmat, out_contribs, model, ntree_limit, tree_weights, approximate, condition, condition_feature);
|
|
}
|
|
|
|
void PredictInteractionContributions(DMatrix* p_fmat, std::vector<bst_float>* out_contribs,
|
|
const gbm::GBTreeModel& model, unsigned ntree_limit,
|
|
std::vector<bst_float>* tree_weights,
|
|
bool approximate) override {
|
|
cpu_predictor->PredictInteractionContributions(p_fmat, out_contribs, model, ntree_limit, tree_weights, approximate);
|
|
}
|
|
|
|
private:
|
|
cl::sycl::queue qu_;
|
|
DeviceModelOneAPI model_;
|
|
|
|
std::mutex lock_;
|
|
std::unique_ptr<Predictor> cpu_predictor;
|
|
|
|
std::unordered_map<DMatrix*, std::unique_ptr<DeviceMatrixOneAPI>>
|
|
device_matrix_cache_;
|
|
};
|
|
|
|
XGBOOST_REGISTER_PREDICTOR(PredictorOneAPI, "oneapi_predictor")
|
|
.describe("Make predictions using DPC++.")
|
|
.set_body([](GenericParameter const* generic_param) {
|
|
return new PredictorOneAPI(generic_param);
|
|
});
|
|
} // namespace predictor
|
|
} // namespace xgboost
|