* [doc] improve xgboost4j-spark-gpu doc [skip ci] (#7793) Co-authored-by: Sameer Raheja <sameerz@users.noreply.github.com> * [jvm-packages] fix evaluation when featuresCols is used (#7798) Co-authored-by: Bobby Wang <wbo4958@gmail.com> Co-authored-by: Sameer Raheja <sameerz@users.noreply.github.com>
247 lines
12 KiB
ReStructuredText
247 lines
12 KiB
ReStructuredText
#############################################
|
||
XGBoost4J-Spark-GPU Tutorial (version 1.6.0+)
|
||
#############################################
|
||
|
||
**XGBoost4J-Spark-GPU** is an open source library aiming to accelerate distributed XGBoost training on Apache Spark cluster from
|
||
end to end with GPUs by leveraging the `RAPIDS Accelerator for Apache Spark <https://nvidia.github.io/spark-rapids/>`_ product.
|
||
|
||
This tutorial will show you how to use **XGBoost4J-Spark-GPU**.
|
||
|
||
.. contents::
|
||
:backlinks: none
|
||
:local:
|
||
|
||
************************************************
|
||
Build an ML Application with XGBoost4J-Spark-GPU
|
||
************************************************
|
||
|
||
Add XGBoost to Your Project
|
||
===========================
|
||
|
||
Before we go into the tour of how to use XGBoost4J-Spark-GPU, you should first consult
|
||
:ref:`Installation from Maven repository <install_jvm_packages>` in order to add XGBoost4J-Spark-GPU as
|
||
a dependency for your project. We provide both stable releases and snapshots.
|
||
|
||
Data Preparation
|
||
================
|
||
|
||
In this section, we use the `Iris <https://archive.ics.uci.edu/ml/datasets/iris>`_ dataset as an example to
|
||
showcase how we use Apache Spark to transform a raw dataset and make it fit the data interface of XGBoost.
|
||
|
||
The Iris dataset is shipped in CSV format. Each instance contains 4 features, "sepal length", "sepal width",
|
||
"petal length" and "petal width". In addition, it contains the "class" column, which is essentially the
|
||
label with three possible values: "Iris Setosa", "Iris Versicolour" and "Iris Virginica".
|
||
|
||
Read Dataset with Spark's Built-In Reader
|
||
-----------------------------------------
|
||
|
||
.. code-block:: scala
|
||
|
||
import org.apache.spark.sql.SparkSession
|
||
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
|
||
|
||
val spark = SparkSession.builder().getOrCreate()
|
||
|
||
val labelName = "class"
|
||
val schema = new StructType(Array(
|
||
StructField("sepal length", DoubleType, true),
|
||
StructField("sepal width", DoubleType, true),
|
||
StructField("petal length", DoubleType, true),
|
||
StructField("petal width", DoubleType, true),
|
||
StructField(labelName, StringType, true)))
|
||
|
||
val xgbInput = spark.read.option("header", "false")
|
||
.schema(schema)
|
||
.csv(dataPath)
|
||
|
||
In the first line, we create an instance of a `SparkSession <https://spark.apache.org/docs/latest/sql-getting-started.html#starting-point-sparksession>`_
|
||
which is the entry point of any Spark application working with DataFrames. The ``schema`` variable
|
||
defines the schema of the DataFrame wrapping Iris data. With this explicitly set schema, we
|
||
can define the column names as well as their types; otherwise the column names would be
|
||
the default ones derived by Spark, such as ``_col0``, etc. Finally, we can use Spark's
|
||
built-in CSV reader to load the Iris CSV file as a DataFrame named ``xgbInput``.
|
||
|
||
Apache Spark also contains many built-in readers for other formats such as ORC, Parquet, Avro, JSON.
|
||
|
||
|
||
Transform Raw Iris Dataset
|
||
--------------------------
|
||
|
||
To make the Iris dataset recognizable to XGBoost, we need to encode the String-typed
|
||
label, i.e. "class", to the Double-typed label.
|
||
|
||
One way to convert the String-typed label to Double is to use Spark's built-in feature transformer
|
||
`StringIndexer <https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.ml.feature.StringIndexer>`_.
|
||
But this feature is not accelerated in RAPIDS Accelerator, which means it will fall back
|
||
to CPU. Instead, we use an alternative way to achieve the same goal with the following code:
|
||
|
||
.. code-block:: scala
|
||
|
||
import org.apache.spark.sql.expressions.Window
|
||
import org.apache.spark.sql.functions._
|
||
|
||
val spec = Window.orderBy(labelName)
|
||
val Array(train, test) = xgbInput
|
||
.withColumn("tmpClassName", dense_rank().over(spec) - 1)
|
||
.drop(labelName)
|
||
.withColumnRenamed("tmpClassName", labelName)
|
||
.randomSplit(Array(0.7, 0.3), seed = 1)
|
||
|
||
train.show(5)
|
||
|
||
.. code-block:: none
|
||
|
||
+------------+-----------+------------+-----------+-----+
|
||
|sepal length|sepal width|petal length|petal width|class|
|
||
+------------+-----------+------------+-----------+-----+
|
||
| 4.3| 3.0| 1.1| 0.1| 0|
|
||
| 4.4| 2.9| 1.4| 0.2| 0|
|
||
| 4.4| 3.0| 1.3| 0.2| 0|
|
||
| 4.4| 3.2| 1.3| 0.2| 0|
|
||
| 4.6| 3.2| 1.4| 0.2| 0|
|
||
+------------+-----------+------------+-----------+-----+
|
||
|
||
|
||
With window operations, we have mapped the string column of labels to label indices.
|
||
|
||
Training
|
||
========
|
||
|
||
The GPU version of XGBoost-Spark supports both regression and classification
|
||
models. Although we use the Iris dataset in this tutorial to show how we use
|
||
``XGBoost/XGBoost4J-Spark-GPU`` to resolve a multi-classes classification problem, the
|
||
usage in Regression is very similar to classification.
|
||
|
||
To train a XGBoost model for classification, we need to claim a XGBoostClassifier first:
|
||
|
||
.. code-block:: scala
|
||
|
||
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
|
||
val xgbParam = Map(
|
||
"objective" -> "multi:softprob",
|
||
"num_class" -> 3,
|
||
"num_round" -> 100,
|
||
"tree_method" -> "gpu_hist",
|
||
"num_workers" -> 1)
|
||
|
||
val featuresNames = schema.fieldNames.filter(name => name != labelName)
|
||
|
||
val xgbClassifier = new XGBoostClassifier(xgbParam)
|
||
.setFeaturesCol(featuresNames)
|
||
.setLabelCol(labelName)
|
||
|
||
The available parameters for training a XGBoost model can be found in :doc:`here </parameter>`.
|
||
Similar to the XGBoost4J-Spark package, in addition to the default set of parameters,
|
||
XGBoost4J-Spark-GPU also supports the camel-case variant of these parameters to be
|
||
consistent with Spark's MLlib naming convention.
|
||
|
||
Specifically, each parameter in :doc:`this page </parameter>` has its equivalent form in
|
||
XGBoost4J-Spark-GPU with camel case. For example, to set ``max_depth`` for each tree, you can pass
|
||
parameter just like what we did in the above code snippet (as ``max_depth`` wrapped in a Map), or
|
||
you can do it through setters in XGBoostClassifer:
|
||
|
||
.. code-block:: scala
|
||
|
||
val xgbClassifier = new XGBoostClassifier(xgbParam)
|
||
.setFeaturesCol(featuresNames)
|
||
.setLabelCol(labelName)
|
||
xgbClassifier.setMaxDepth(2)
|
||
|
||
.. note::
|
||
|
||
In contrast with XGBoost4j-Spark which accepts both a feature column with VectorUDT type and
|
||
an array of feature column names, XGBoost4j-Spark-GPU only accepts an array of feature
|
||
column names by ``setFeaturesCol(value: Array[String])``.
|
||
|
||
After setting XGBoostClassifier parameters and feature/label columns, we can build a
|
||
transformer, XGBoostClassificationModel by fitting XGBoostClassifier with the input
|
||
DataFrame. This ``fit`` operation is essentially the training process and the generated
|
||
model can then be used in other tasks like prediction.
|
||
|
||
.. code-block:: scala
|
||
|
||
val xgbClassificationModel = xgbClassifier.fit(train)
|
||
|
||
Prediction
|
||
==========
|
||
|
||
When we get a model, either a XGBoostClassificationModel or a XGBoostRegressionModel, it takes a DataFrame as an input,
|
||
reads the column containing feature vectors, predicts for each feature vector, and outputs a new DataFrame
|
||
with the following columns by default:
|
||
|
||
* XGBoostClassificationModel will output margins (``rawPredictionCol``), probabilities(``probabilityCol``) and the eventual prediction labels (``predictionCol``) for each possible label.
|
||
* XGBoostRegressionModel will output prediction a label(``predictionCol``).
|
||
|
||
.. code-block:: scala
|
||
|
||
val xgbClassificationModel = xgbClassifier.fit(train)
|
||
val results = xgbClassificationModel.transform(test)
|
||
results.show()
|
||
|
||
With the above code snippet, we get a DataFrame as result, which contains the margin, probability for each class,
|
||
and the prediction for each instance.
|
||
|
||
.. code-block:: none
|
||
|
||
+------------+-----------+------------------+-------------------+-----+--------------------+--------------------+----------+
|
||
|sepal length|sepal width| petal length| petal width|class| rawPrediction| probability|prediction|
|
||
+------------+-----------+------------------+-------------------+-----+--------------------+--------------------+----------+
|
||
| 4.5| 2.3| 1.3|0.30000000000000004| 0|[3.16666603088378...|[0.98853939771652...| 0.0|
|
||
| 4.6| 3.1| 1.5| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 4.8| 3.1| 1.6| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 4.8| 3.4| 1.6| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 4.8| 3.4|1.9000000000000001| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 4.9| 2.4| 3.3| 1.0| 1|[-2.1498908996582...|[0.00596602633595...| 1.0|
|
||
| 4.9| 2.5| 4.5| 1.7| 2|[-2.1498908996582...|[0.00596602633595...| 1.0|
|
||
| 5.0| 3.5| 1.3|0.30000000000000004| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.1| 2.5| 3.0| 1.1| 1|[3.16666603088378...|[0.98853939771652...| 0.0|
|
||
| 5.1| 3.3| 1.7| 0.5| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.1| 3.5| 1.4| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.1| 3.8| 1.6| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.2| 3.4| 1.4| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.2| 3.5| 1.5| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.2| 4.1| 1.5| 0.1| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.4| 3.9| 1.7| 0.4| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.5| 2.4| 3.8| 1.1| 1|[-2.1498908996582...|[0.00596602633595...| 1.0|
|
||
| 5.5| 4.2| 1.4| 0.2| 0|[3.25857257843017...|[0.98969423770904...| 0.0|
|
||
| 5.7| 2.5| 5.0| 2.0| 2|[-2.1498908996582...|[0.00280966912396...| 2.0|
|
||
| 5.7| 3.0| 4.2| 1.2| 1|[-2.1498908996582...|[0.00643939292058...| 1.0|
|
||
+------------+-----------+------------------+-------------------+-----+--------------------+--------------------+----------+
|
||
|
||
**********************
|
||
Submit the application
|
||
**********************
|
||
|
||
Here’s an example to submit an end-to-end XGBoost-4j-Spark-GPU Spark application to an
|
||
Apache Spark Standalone cluster, assuming the application main class is Iris and the
|
||
application jar is iris-1.0.0.jar
|
||
|
||
.. code-block:: bash
|
||
|
||
cudf_version=22.02.0
|
||
rapids_version=22.02.0
|
||
xgboost_version=1.6.0
|
||
main_class=Iris
|
||
app_jar=iris-1.0.0.jar
|
||
|
||
spark-submit \
|
||
--master $master \
|
||
--packages ai.rapids:cudf:${cudf_version},com.nvidia:rapids-4-spark_2.12:${rapids_version},ml.dmlc:xgboost4j-gpu_2.12:${xgboost_version},ml.dmlc:xgboost4j-spark-gpu_2.12:${xgboost_version} \
|
||
--conf spark.executor.cores=12 \
|
||
--conf spark.task.cpus=1 \
|
||
--conf spark.executor.resource.gpu.amount=1 \
|
||
--conf spark.task.resource.gpu.amount=0.08 \
|
||
--conf spark.rapids.sql.csv.read.double.enabled=true \
|
||
--conf spark.rapids.sql.hasNans=false \
|
||
--conf spark.plugins=com.nvidia.spark.SQLPlugin \
|
||
--class ${main_class} \
|
||
${app_jar}
|
||
|
||
* First, we need to specify the ``RAPIDS Accelerator, cudf, xgboost4j-gpu, xgboost4j-spark-gpu`` packages by ``--packages``
|
||
* Second, ``RAPIDS Accelerator`` is a Spark plugin, so we need to configure it by specifying ``spark.plugins=com.nvidia.spark.SQLPlugin``
|
||
|
||
For details about other ``RAPIDS Accelerator`` other configurations, please refer to the `configuration <https://nvidia.github.io/spark-rapids/docs/configs.html>`_.
|
||
|
||
For ``RAPIDS Accelerator Frequently Asked Questions``, please refer to the
|
||
`frequently-asked-questions <https://nvidia.github.io/spark-rapids/docs/FAQ.html#frequently-asked-questions>`_.
|