xgboost/tests/cpp/common/test_transform_range.cu
Jiaming Yuan f1275f52c1
Fix specifying gpu_id, add tests. (#3851)
* Rewrite gpu_id related code.

* Remove normalised/unnormalised operatios.
* Address difference between `Index' and `Device ID'.
* Modify doc for `gpu_id'.
* Better LOG for GPUSet.
* Check specified n_gpus.
* Remove inappropriate `device_idx' term.
* Clarify GpuIdType and size_t.
2018-11-06 18:17:53 +13:00

110 lines
3.5 KiB
Plaintext

// This converts all tests from CPU to GPU.
#include "test_transform_range.cc"
#if defined(XGBOOST_USE_NCCL)
namespace xgboost {
namespace common {
// Test here is multi gpu specific
TEST(Transform, MGPU_Basic) {
auto devices = GPUSet::AllVisible();
CHECK_GT(devices.Size(), 1);
const size_t size {256};
std::vector<bst_float> h_in(size);
std::vector<bst_float> h_out(size);
InitializeRange(h_in.begin(), h_in.end());
std::vector<bst_float> h_sol(size);
InitializeRange(h_sol.begin(), h_sol.end());
const HostDeviceVector<bst_float> in_vec {h_in,
GPUDistribution::Block(GPUSet::Empty())};
HostDeviceVector<bst_float> out_vec {h_out,
GPUDistribution::Block(GPUSet::Empty())};
out_vec.Fill(0);
in_vec.Reshard(GPUDistribution::Granular(devices, 8));
out_vec.Reshard(GPUDistribution::Block(devices));
// Granularity is different, resharding will throw.
EXPECT_ANY_THROW(
Transform<>::Init(TestTransformRange<bst_float>{}, Range{0, size}, devices)
.Eval(&out_vec, &in_vec));
Transform<>::Init(TestTransformRange<bst_float>{}, Range{0, size},
devices, false).Eval(&out_vec, &in_vec);
std::vector<bst_float> res = out_vec.HostVector();
ASSERT_TRUE(std::equal(h_sol.begin(), h_sol.end(), res.begin()));
}
// Test for multi-classes setting.
template <typename T>
struct TestTransformRangeGranular {
const size_t granularity = 8;
TestTransformRangeGranular(const size_t granular) : granularity{granular} {}
void XGBOOST_DEVICE operator()(size_t _idx,
Span<bst_float> _out, Span<const bst_float> _in) {
auto in_sub = _in.subspan(_idx * granularity, granularity);
auto out_sub = _out.subspan(_idx * granularity, granularity);
for (size_t i = 0; i < granularity; ++i) {
out_sub[i] = in_sub[i];
}
}
};
TEST(Transform, MGPU_Granularity) {
GPUSet devices = GPUSet::All(0, -1);
const size_t size {8990};
const size_t granularity = 10;
GPUDistribution distribution =
GPUDistribution::Granular(devices, granularity);
std::vector<bst_float> h_in(size);
std::vector<bst_float> h_out(size);
InitializeRange(h_in.begin(), h_in.end());
std::vector<bst_float> h_sol(size);
InitializeRange(h_sol.begin(), h_sol.end());
const HostDeviceVector<bst_float> in_vec {h_in, distribution};
HostDeviceVector<bst_float> out_vec {h_out, distribution};
ASSERT_NO_THROW(
Transform<>::Init(
TestTransformRangeGranular<bst_float>{granularity},
Range{0, size / granularity},
distribution)
.Eval(&out_vec, &in_vec));
std::vector<bst_float> res = out_vec.HostVector();
ASSERT_TRUE(std::equal(h_sol.begin(), h_sol.end(), res.begin()));
}
TEST(Transform, MGPU_SpecifiedGpuId) {
// Use 1 GPU, Numbering of GPU starts from 1
auto devices = GPUSet::All(1, 1);
const size_t size {256};
std::vector<bst_float> h_in(size);
std::vector<bst_float> h_out(size);
InitializeRange(h_in.begin(), h_in.end());
std::vector<bst_float> h_sol(size);
InitializeRange(h_sol.begin(), h_sol.end());
const HostDeviceVector<bst_float> in_vec {h_in,
GPUDistribution::Block(devices)};
HostDeviceVector<bst_float> out_vec {h_out,
GPUDistribution::Block(devices)};
ASSERT_NO_THROW(
Transform<>::Init(TestTransformRange<bst_float>{}, Range{0, size}, devices)
.Eval(&out_vec, &in_vec));
std::vector<bst_float> res = out_vec.HostVector();
ASSERT_TRUE(std::equal(h_sol.begin(), h_sol.end(), res.begin()));
}
} // namespace xgboost
} // namespace common
#endif