david-cortes f7005d32c1
[R] Use inplace predict (#9829)
---------

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2024-02-24 02:03:54 +08:00

889 lines
29 KiB
R

context("basic functions")
data(agaricus.train, package = "xgboost")
data(agaricus.test, package = "xgboost")
train <- agaricus.train
test <- agaricus.test
set.seed(1994)
# disable some tests for Win32
windows_flag <- .Platform$OS.type == "windows" &&
.Machine$sizeof.pointer != 8
solaris_flag <- (Sys.info()["sysname"] == "SunOS")
n_threads <- 1
test_that("train and predict binary classification", {
nrounds <- 2
expect_output(
bst <- xgb.train(
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = nrounds,
objective = "binary:logistic", eval_metric = "error",
watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error"
)
expect_equal(class(bst), "xgb.Booster")
expect_equal(xgb.get.num.boosted.rounds(bst), nrounds)
expect_false(is.null(attributes(bst)$evaluation_log))
expect_equal(nrow(attributes(bst)$evaluation_log), nrounds)
expect_lt(attributes(bst)$evaluation_log[, min(train_error)], 0.03)
pred <- predict(bst, test$data)
expect_length(pred, 1611)
pred1 <- predict(bst, train$data, iterationrange = c(1, 1))
expect_length(pred1, 6513)
err_pred1 <- sum((pred1 > 0.5) != train$label) / length(train$label)
err_log <- attributes(bst)$evaluation_log[1, train_error]
expect_lt(abs(err_pred1 - err_log), 10e-6)
})
test_that("parameter validation works", {
p <- list(foo = "bar")
nrounds <- 1
set.seed(1994)
d <- cbind(
x1 = rnorm(10),
x2 = rnorm(10),
x3 = rnorm(10)
)
y <- d[, "x1"] + d[, "x2"]^2 +
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
rnorm(10)
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
correct <- function() {
params <- list(
max_depth = 2,
booster = "dart",
rate_drop = 0.5,
one_drop = TRUE,
nthread = n_threads,
objective = "reg:squarederror"
)
xgb.train(params = params, data = dtrain, nrounds = nrounds)
}
expect_silent(correct())
incorrect <- function() {
params <- list(
max_depth = 2,
booster = "dart",
rate_drop = 0.5,
one_drop = TRUE,
objective = "reg:squarederror",
nthread = n_threads,
foo = "bar",
bar = "foo"
)
output <- capture.output(
xgb.train(params = params, data = dtrain, nrounds = nrounds),
type = "message"
)
print(output)
}
expect_output(incorrect(), '\\\\"bar\\\\", \\\\"foo\\\\"')
})
test_that("dart prediction works", {
nrounds <- 32
set.seed(1994)
d <- cbind(
x1 = rnorm(100),
x2 = rnorm(100),
x3 = rnorm(100)
)
y <- d[, "x1"] + d[, "x2"]^2 +
ifelse(d[, "x3"] > .5, d[, "x3"]^2, 2^d[, "x3"]) +
rnorm(100)
set.seed(1994)
booster_by_xgboost <- xgb.train(
data = xgb.DMatrix(d, label = y),
max_depth = 2,
booster = "dart",
rate_drop = 0.5,
one_drop = TRUE,
eta = 1,
nthread = n_threads,
nrounds = nrounds,
objective = "reg:squarederror"
)
pred_by_xgboost_0 <- predict(booster_by_xgboost, newdata = d, iterationrange = NULL)
pred_by_xgboost_1 <- predict(booster_by_xgboost, newdata = d, iterationrange = c(1, nrounds))
expect_true(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_1, byrow = TRUE)))
pred_by_xgboost_2 <- predict(booster_by_xgboost, newdata = d, training = TRUE)
expect_false(all(matrix(pred_by_xgboost_0, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
set.seed(1994)
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
booster_by_train <- xgb.train(
params = list(
booster = "dart",
max_depth = 2,
eta = 1,
rate_drop = 0.5,
one_drop = TRUE,
nthread = n_threads,
objective = "reg:squarederror"
),
data = dtrain,
nrounds = nrounds
)
pred_by_train_0 <- predict(booster_by_train, newdata = dtrain, iterationrange = NULL)
pred_by_train_1 <- predict(booster_by_train, newdata = dtrain, iterationrange = c(1, nrounds))
pred_by_train_2 <- predict(booster_by_train, newdata = dtrain, training = TRUE)
expect_equal(pred_by_train_0, pred_by_xgboost_0, tolerance = 1e-6)
expect_equal(pred_by_train_1, pred_by_xgboost_1, tolerance = 1e-6)
expect_true(all(matrix(pred_by_train_2, byrow = TRUE) == matrix(pred_by_xgboost_2, byrow = TRUE)))
})
test_that("train and predict softprob", {
lb <- as.numeric(iris$Species) - 1
set.seed(11)
expect_output(
bst <- xgb.train(
data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb),
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
objective = "multi:softprob", num_class = 3, eval_metric = "merror",
watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
),
"train-merror"
)
expect_false(is.null(attributes(bst)$evaluation_log))
expect_lt(attributes(bst)$evaluation_log[, min(train_merror)], 0.025)
expect_equal(xgb.get.num.boosted.rounds(bst), 5)
pred <- predict(bst, as.matrix(iris[, -5]))
expect_length(pred, nrow(iris) * 3)
# row sums add up to total probability of 1:
expect_equal(rowSums(matrix(pred, ncol = 3, byrow = TRUE)), rep(1, nrow(iris)), tolerance = 1e-7)
# manually calculate error at the last iteration:
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
expect_equal(as.numeric(t(mpred)), pred)
pred_labels <- max.col(mpred) - 1
err <- sum(pred_labels != lb) / length(lb)
expect_equal(attributes(bst)$evaluation_log[5, train_merror], err, tolerance = 5e-6)
# manually calculate error at the 1st iteration:
mpred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, iterationrange = c(1, 1))
pred_labels <- max.col(mpred) - 1
err <- sum(pred_labels != lb) / length(lb)
expect_equal(attributes(bst)$evaluation_log[1, train_merror], err, tolerance = 5e-6)
mpred1 <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, iterationrange = c(1, 1))
expect_equal(mpred, mpred1)
d <- cbind(
x1 = rnorm(100),
x2 = rnorm(100),
x3 = rnorm(100)
)
y <- sample.int(10, 100, replace = TRUE) - 1
dtrain <- xgb.DMatrix(data = d, label = y, nthread = n_threads)
booster <- xgb.train(
params = list(tree_method = "hist", nthread = n_threads),
data = dtrain, nrounds = 4, num_class = 10,
objective = "multi:softprob"
)
predt <- predict(booster, as.matrix(d), reshape = TRUE, strict_shape = FALSE)
expect_equal(ncol(predt), 10)
expect_equal(rowSums(predt), rep(1, 100), tolerance = 1e-7)
})
test_that("train and predict softmax", {
lb <- as.numeric(iris$Species) - 1
set.seed(11)
expect_output(
bst <- xgb.train(
data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb),
max_depth = 3, eta = 0.5, nthread = n_threads, nrounds = 5,
objective = "multi:softmax", num_class = 3, eval_metric = "merror",
watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
),
"train-merror"
)
expect_false(is.null(attributes(bst)$evaluation_log))
expect_lt(attributes(bst)$evaluation_log[, min(train_merror)], 0.025)
expect_equal(xgb.get.num.boosted.rounds(bst), 5)
pred <- predict(bst, as.matrix(iris[, -5]))
expect_length(pred, nrow(iris))
err <- sum(pred != lb) / length(lb)
expect_equal(attributes(bst)$evaluation_log[5, train_merror], err, tolerance = 5e-6)
})
test_that("train and predict RF", {
set.seed(11)
lb <- train$label
# single iteration
bst <- xgb.train(
data = xgb.DMatrix(train$data, label = lb), max_depth = 5,
nthread = n_threads,
nrounds = 1, objective = "binary:logistic", eval_metric = "error",
num_parallel_tree = 20, subsample = 0.6, colsample_bytree = 0.1,
watchlist = list(train = xgb.DMatrix(train$data, label = lb))
)
expect_equal(xgb.get.num.boosted.rounds(bst), 1)
pred <- predict(bst, train$data)
pred_err <- sum((pred > 0.5) != lb) / length(lb)
expect_lt(abs(attributes(bst)$evaluation_log[1, train_error] - pred_err), 10e-6)
# expect_lt(pred_err, 0.03)
pred <- predict(bst, train$data, iterationrange = c(1, 1))
pred_err_20 <- sum((pred > 0.5) != lb) / length(lb)
expect_equal(pred_err_20, pred_err)
})
test_that("train and predict RF with softprob", {
lb <- as.numeric(iris$Species) - 1
nrounds <- 15
set.seed(11)
bst <- xgb.train(
data = xgb.DMatrix(as.matrix(iris[, -5]), label = lb),
max_depth = 3, eta = 0.9, nthread = n_threads, nrounds = nrounds,
objective = "multi:softprob", eval_metric = "merror",
num_class = 3, verbose = 0,
num_parallel_tree = 4, subsample = 0.5, colsample_bytree = 0.5,
watchlist = list(train = xgb.DMatrix(as.matrix(iris[, -5]), label = lb))
)
expect_equal(xgb.get.num.boosted.rounds(bst), 15)
# predict for all iterations:
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE)
expect_equal(dim(pred), c(nrow(iris), 3))
pred_labels <- max.col(pred) - 1
err <- sum(pred_labels != lb) / length(lb)
expect_equal(attributes(bst)$evaluation_log[nrounds, train_merror], err, tolerance = 5e-6)
# predict for 7 iterations and adjust for 4 parallel trees per iteration
pred <- predict(bst, as.matrix(iris[, -5]), reshape = TRUE, iterationrange = c(1, 7))
err <- sum((max.col(pred) - 1) != lb) / length(lb)
expect_equal(attributes(bst)$evaluation_log[7, train_merror], err, tolerance = 5e-6)
})
test_that("use of multiple eval metrics works", {
expect_output(
bst <- xgb.train(
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss",
watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error.*train-auc.*train-logloss"
)
expect_false(is.null(attributes(bst)$evaluation_log))
expect_equal(dim(attributes(bst)$evaluation_log), c(2, 4))
expect_equal(colnames(attributes(bst)$evaluation_log), c("iter", "train_error", "train_auc", "train_logloss"))
expect_output(
bst2 <- xgb.train(
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = list("error", "auc", "logloss"),
watchlist = list(train = xgb.DMatrix(train$data, label = train$label))
),
"train-error.*train-auc.*train-logloss"
)
expect_false(is.null(attributes(bst2)$evaluation_log))
expect_equal(dim(attributes(bst2)$evaluation_log), c(2, 4))
expect_equal(colnames(attributes(bst2)$evaluation_log), c("iter", "train_error", "train_auc", "train_logloss"))
})
test_that("training continuation works", {
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
watchlist <- list(train = dtrain)
param <- list(
objective = "binary:logistic", max_depth = 2, eta = 1, nthread = n_threads
)
# for the reference, use 4 iterations at once:
set.seed(11)
bst <- xgb.train(param, dtrain, nrounds = 4, watchlist, verbose = 0)
# first two iterations:
set.seed(11)
bst1 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0)
# continue for two more:
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = bst1)
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
expect_false(is.null(attributes(bst2)$evaluation_log))
expect_equal(dim(attributes(bst2)$evaluation_log), c(4, 2))
expect_equal(attributes(bst2)$evaluation_log, attributes(bst)$evaluation_log)
# test continuing from raw model data
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = xgb.save.raw(bst1))
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
expect_equal(dim(attributes(bst2)$evaluation_log), c(2, 2))
# test continuing from a model in file
fname <- file.path(tempdir(), "xgboost.json")
xgb.save(bst1, fname)
bst2 <- xgb.train(param, dtrain, nrounds = 2, watchlist, verbose = 0, xgb_model = fname)
if (!windows_flag && !solaris_flag) {
expect_equal(xgb.save.raw(bst), xgb.save.raw(bst2))
}
expect_equal(dim(attributes(bst2)$evaluation_log), c(2, 2))
})
test_that("xgb.cv works", {
set.seed(11)
expect_output(
cv <- xgb.cv(
data = train$data, label = train$label, max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = "error", verbose = TRUE
),
"train-error:"
)
expect_is(cv, "xgb.cv.synchronous")
expect_false(is.null(cv$evaluation_log))
expect_lt(cv$evaluation_log[, min(test_error_mean)], 0.03)
expect_lt(cv$evaluation_log[, min(test_error_std)], 0.0085)
expect_equal(cv$niter, 2)
expect_false(is.null(cv$folds) && is.list(cv$folds))
expect_length(cv$folds, 5)
expect_false(is.null(cv$params) && is.list(cv$params))
expect_false(is.null(cv$callbacks))
expect_false(is.null(cv$call))
})
test_that("xgb.cv works with stratified folds", {
dtrain <- xgb.DMatrix(train$data, label = train$label, nthread = n_threads)
set.seed(314159)
cv <- xgb.cv(
data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
verbose = TRUE, stratified = FALSE
)
set.seed(314159)
cv2 <- xgb.cv(
data = dtrain, max_depth = 2, nfold = 5,
eta = 1., nthread = n_threads, nrounds = 2, objective = "binary:logistic",
verbose = TRUE, stratified = TRUE
)
# Stratified folds should result in a different evaluation logs
expect_true(all(cv$evaluation_log[, test_logloss_mean] != cv2$evaluation_log[, test_logloss_mean]))
})
test_that("train and predict with non-strict classes", {
# standard dense matrix input
train_dense <- as.matrix(train$data)
bst <- xgb.train(
data = xgb.DMatrix(train_dense, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
verbose = 0
)
pr0 <- predict(bst, train_dense)
# dense matrix-like input of non-matrix class
class(train_dense) <- "shmatrix"
expect_true(is.matrix(train_dense))
expect_error(
bst <- xgb.train(
data = xgb.DMatrix(train_dense, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
verbose = 0
),
regexp = NA
)
expect_error(pr <- predict(bst, train_dense), regexp = NA)
expect_equal(pr0, pr)
# dense matrix-like input of non-matrix class with some inheritance
class(train_dense) <- c("pphmatrix", "shmatrix")
expect_true(is.matrix(train_dense))
expect_error(
bst <- xgb.train(
data = xgb.DMatrix(train_dense, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
verbose = 0
),
regexp = NA
)
expect_error(pr <- predict(bst, train_dense), regexp = NA)
expect_equal(pr0, pr)
# when someone inherits from xgb.Booster, it should still be possible to use it as xgb.Booster
class(bst) <- c("super.Booster", "xgb.Booster")
expect_error(pr <- predict(bst, train_dense), regexp = NA)
expect_equal(pr0, pr)
})
test_that("max_delta_step works", {
dtrain <- xgb.DMatrix(
agaricus.train$data, label = agaricus.train$label, nthread = n_threads
)
watchlist <- list(train = dtrain)
param <- list(
objective = "binary:logistic", eval_metric = "logloss", max_depth = 2,
nthread = n_threads,
eta = 0.5
)
nrounds <- 5
# model with no restriction on max_delta_step
bst1 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1)
# model with restricted max_delta_step
bst2 <- xgb.train(param, dtrain, nrounds, watchlist, verbose = 1, max_delta_step = 1)
# the no-restriction model is expected to have consistently lower loss during the initial iterations
expect_true(all(attributes(bst1)$evaluation_log$train_logloss < attributes(bst2)$evaluation_log$train_logloss))
expect_lt(mean(attributes(bst1)$evaluation_log$train_logloss) / mean(attributes(bst2)$evaluation_log$train_logloss), 0.8)
})
test_that("colsample_bytree works", {
# Randomly generate data matrix by sampling from uniform distribution [-1, 1]
set.seed(1)
train_x <- matrix(runif(1000, min = -1, max = 1), ncol = 100)
train_y <- as.numeric(rowSums(train_x) > 0)
test_x <- matrix(runif(1000, min = -1, max = 1), ncol = 100)
test_y <- as.numeric(rowSums(test_x) > 0)
colnames(train_x) <- paste0("Feature_", sprintf("%03d", 1:100))
colnames(test_x) <- paste0("Feature_", sprintf("%03d", 1:100))
dtrain <- xgb.DMatrix(train_x, label = train_y, nthread = n_threads)
dtest <- xgb.DMatrix(test_x, label = test_y, nthread = n_threads)
watchlist <- list(train = dtrain, eval = dtest)
## Use colsample_bytree = 0.01, so that roughly one out of 100 features is chosen for
## each tree
param <- list(
max_depth = 2, eta = 0, nthread = n_threads,
colsample_bytree = 0.01, objective = "binary:logistic",
eval_metric = "auc"
)
set.seed(2)
bst <- xgb.train(param, dtrain, nrounds = 100, watchlist, verbose = 0)
xgb.importance(model = bst)
# If colsample_bytree works properly, a variety of features should be used
# in the 100 trees
expect_gte(nrow(xgb.importance(model = bst)), 28)
})
test_that("Configuration works", {
bst <- xgb.train(
data = xgb.DMatrix(train$data, label = train$label), max_depth = 2,
eta = 1, nthread = n_threads, nrounds = 2, objective = "binary:logistic",
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss"
)
config <- xgb.config(bst)
xgb.config(bst) <- config
reloaded_config <- xgb.config(bst)
expect_equal(config, reloaded_config)
})
test_that("strict_shape works", {
n_rounds <- 2
test_strict_shape <- function(bst, X, n_groups) {
predt <- predict(bst, X, strict_shape = TRUE)
margin <- predict(bst, X, outputmargin = TRUE, strict_shape = TRUE)
contri <- predict(bst, X, predcontrib = TRUE, strict_shape = TRUE)
interact <- predict(bst, X, predinteraction = TRUE, strict_shape = TRUE)
leaf <- predict(bst, X, predleaf = TRUE, strict_shape = TRUE)
n_rows <- nrow(X)
n_cols <- ncol(X)
expect_equal(dim(predt), c(n_groups, n_rows))
expect_equal(dim(margin), c(n_groups, n_rows))
expect_equal(dim(contri), c(n_cols + 1, n_groups, n_rows))
expect_equal(dim(interact), c(n_cols + 1, n_cols + 1, n_groups, n_rows))
expect_equal(dim(leaf), c(1, n_groups, n_rounds, n_rows))
if (n_groups != 1) {
for (g in seq_len(n_groups)) {
expect_lt(max(abs(colSums(contri[, g, ]) - margin[g, ])), 1e-5)
}
}
}
test_iris <- function() {
y <- as.numeric(iris$Species) - 1
X <- as.matrix(iris[, -5])
bst <- xgb.train(
data = xgb.DMatrix(X, label = y),
max_depth = 2, nrounds = n_rounds, nthread = n_threads,
objective = "multi:softprob", num_class = 3, eval_metric = "merror"
)
test_strict_shape(bst, X, 3)
}
test_agaricus <- function() {
data(agaricus.train, package = "xgboost")
X <- agaricus.train$data
y <- agaricus.train$label
bst <- xgb.train(
data = xgb.DMatrix(X, label = y), max_depth = 2, nthread = n_threads,
nrounds = n_rounds, objective = "binary:logistic",
eval_metric = "error", eval_metric = "auc", eval_metric = "logloss"
)
test_strict_shape(bst, X, 1)
}
test_iris()
test_agaricus()
})
test_that("'predict' accepts CSR data", {
X <- agaricus.train$data
y <- agaricus.train$label
x_csc <- as(X[1L, , drop = FALSE], "CsparseMatrix")
x_csr <- as(x_csc, "RsparseMatrix")
x_spv <- as(x_csc, "sparseVector")
bst <- xgb.train(
data = xgb.DMatrix(X, label = y), objective = "binary:logistic",
nrounds = 5L, verbose = FALSE, nthread = n_threads,
)
p_csc <- predict(bst, x_csc)
p_csr <- predict(bst, x_csr)
p_spv <- predict(bst, x_spv)
expect_equal(p_csc, p_csr)
expect_equal(p_csc, p_spv)
})
test_that("Quantile regression accepts multiple quantiles", {
data(mtcars)
y <- mtcars[, 1]
x <- as.matrix(mtcars[, -1])
dm <- xgb.DMatrix(data = x, label = y)
model <- xgb.train(
data = dm,
params = list(
objective = "reg:quantileerror",
tree_method = "exact",
quantile_alpha = c(0.05, 0.5, 0.95),
nthread = n_threads
),
nrounds = 15
)
pred <- predict(model, x, reshape = TRUE)
expect_equal(dim(pred)[1], nrow(x))
expect_equal(dim(pred)[2], 3)
expect_true(all(pred[, 1] <= pred[, 3]))
cors <- cor(y, pred)
expect_true(cors[2] > cors[1])
expect_true(cors[2] > cors[3])
expect_true(cors[2] > 0.85)
})
test_that("Can use multi-output labels with built-in objectives", {
data("mtcars")
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
y_mirrored <- cbind(y, -y)
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
multi_strategy = "multi_output_tree",
objective = "reg:squarederror",
nthread = n_threads
),
data = dm,
nrounds = 5
)
pred <- predict(model, x, reshape = TRUE)
expect_equal(pred[, 1], -pred[, 2])
expect_true(cor(y, pred[, 1]) > 0.9)
expect_true(cor(y, pred[, 2]) < -0.9)
})
test_that("Can use multi-output labels with custom objectives", {
data("mtcars")
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
y_mirrored <- cbind(y, -y)
dm <- xgb.DMatrix(x, label = y_mirrored, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
multi_strategy = "multi_output_tree",
base_score = 0,
objective = function(pred, dtrain) {
y <- getinfo(dtrain, "label")
grad <- pred - y
hess <- rep(1, nrow(grad) * ncol(grad))
hess <- matrix(hess, nrow = nrow(grad))
return(list(grad = grad, hess = hess))
},
nthread = n_threads
),
data = dm,
nrounds = 5
)
pred <- predict(model, x, reshape = TRUE)
expect_equal(pred[, 1], -pred[, 2])
expect_true(cor(y, pred[, 1]) > 0.9)
expect_true(cor(y, pred[, 2]) < -0.9)
})
test_that("Can use ranking objectives with either 'qid' or 'group'", {
set.seed(123)
x <- matrix(rnorm(100 * 10), nrow = 100)
y <- sample(2, size = 100, replace = TRUE) - 1
qid <- c(rep(1, 20), rep(2, 20), rep(3, 60))
gr <- c(20, 20, 60)
dmat_qid <- xgb.DMatrix(x, label = y, qid = qid)
dmat_gr <- xgb.DMatrix(x, label = y, group = gr)
params <- list(tree_method = "hist",
lambdarank_num_pair_per_sample = 8,
objective = "rank:ndcg",
lambdarank_pair_method = "topk",
nthread = n_threads)
set.seed(123)
model_qid <- xgb.train(params, dmat_qid, nrounds = 5)
set.seed(123)
model_gr <- xgb.train(params, dmat_gr, nrounds = 5)
pred_qid <- predict(model_qid, x)
pred_gr <- predict(model_gr, x)
expect_equal(pred_qid, pred_gr)
})
test_that("Can predict on data.frame objects", {
data("mtcars")
y <- mtcars$mpg
x_df <- mtcars[, -1]
x_mat <- as.matrix(x_df)
dm <- xgb.DMatrix(x_mat, label = y, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
objective = "reg:squarederror",
nthread = n_threads
),
data = dm,
nrounds = 5
)
pred_mat <- predict(model, xgb.DMatrix(x_mat), nthread = n_threads)
pred_df <- predict(model, x_df, nthread = n_threads)
expect_equal(pred_mat, pred_df)
})
test_that("'base_margin' gives the same result in DMatrix as in inplace_predict", {
data("mtcars")
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
dm <- xgb.DMatrix(x, label = y, nthread = n_threads)
model <- xgb.train(
params = list(
tree_method = "hist",
objective = "reg:squarederror",
nthread = n_threads
),
data = dm,
nrounds = 5
)
set.seed(123)
base_margin <- rnorm(nrow(x))
dm_w_base <- xgb.DMatrix(data = x, base_margin = base_margin)
pred_from_dm <- predict(model, dm_w_base)
pred_from_mat <- predict(model, x, base_margin = base_margin)
expect_equal(pred_from_dm, pred_from_mat)
})
test_that("Coefficients from gblinear have the expected shape and names", {
# Single-column coefficients
data(mtcars)
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
mm <- model.matrix(~., data = mtcars[, -1])
dm <- xgb.DMatrix(x, label = y, nthread = 1)
model <- xgb.train(
data = dm,
params = list(
booster = "gblinear",
nthread = 1
),
nrounds = 3
)
coefs <- coef(model)
expect_equal(length(coefs), ncol(x) + 1)
expect_equal(names(coefs), c("(Intercept)", colnames(x)))
pred_auto <- predict(model, x)
pred_manual <- as.numeric(mm %*% coefs)
expect_equal(pred_manual, pred_auto, tolerance = 1e-5)
# Multi-column coefficients
data(iris)
y <- as.numeric(iris$Species) - 1
x <- as.matrix(iris[, -5])
dm <- xgb.DMatrix(x, label = y, nthread = 1)
mm <- model.matrix(~., data = iris[, -5])
model <- xgb.train(
data = dm,
params = list(
booster = "gblinear",
objective = "multi:softprob",
num_class = 3,
nthread = 1
),
nrounds = 3
)
coefs <- coef(model)
expect_equal(nrow(coefs), ncol(x) + 1)
expect_equal(ncol(coefs), 3)
expect_equal(row.names(coefs), c("(Intercept)", colnames(x)))
pred_auto <- predict(model, x, outputmargin = TRUE, reshape = TRUE)
pred_manual <- unname(mm %*% coefs)
expect_equal(pred_manual, pred_auto, tolerance = 1e-7)
})
test_that("Deep copies work as expected", {
data(mtcars)
y <- mtcars$mpg
x <- mtcars[, -1]
dm <- xgb.DMatrix(x, label = y, nthread = 1)
model <- xgb.train(
data = dm,
params = list(nthread = 1),
nrounds = 3
)
xgb.attr(model, "my_attr") <- 100
model_shallow_copy <- model
xgb.attr(model_shallow_copy, "my_attr") <- 333
attr_orig <- xgb.attr(model, "my_attr")
attr_shallow <- xgb.attr(model_shallow_copy, "my_attr")
expect_equal(attr_orig, attr_shallow)
model_deep_copy <- xgb.copy.Booster(model)
xgb.attr(model_deep_copy, "my_attr") <- 444
attr_orig <- xgb.attr(model, "my_attr")
attr_deep <- xgb.attr(model_deep_copy, "my_attr")
expect_false(attr_orig == attr_deep)
})
test_that("Pointer comparison works as expected", {
library(xgboost)
y <- mtcars$mpg
x <- as.matrix(mtcars[, -1])
model <- xgb.train(
params = list(nthread = 1),
data = xgb.DMatrix(x, label = y, nthread = 1),
nrounds = 3
)
model_shallow_copy <- model
expect_true(xgb.is.same.Booster(model, model_shallow_copy))
model_deep_copy <- xgb.copy.Booster(model)
expect_false(xgb.is.same.Booster(model, model_deep_copy))
xgb.attr(model_shallow_copy, "my_attr") <- 111
expect_equal(xgb.attr(model, "my_attr"), "111")
expect_null(xgb.attr(model_deep_copy, "my_attr"))
})
test_that("DMatrix field are set to booster when training", {
set.seed(123)
y <- rnorm(100)
x <- matrix(rnorm(100 * 3), nrow = 100)
x[, 2] <- abs(as.integer(x[, 2]))
dm_unnamed <- xgb.DMatrix(x, label = y, nthread = 1)
dm_feature_names <- xgb.DMatrix(x, label = y, feature_names = c("a", "b", "c"), nthread = 1)
dm_feature_types <- xgb.DMatrix(x, label = y)
setinfo(dm_feature_types, "feature_type", c("q", "c", "q"))
dm_both <- xgb.DMatrix(x, label = y, feature_names = c("a", "b", "c"), nthread = 1)
setinfo(dm_both, "feature_type", c("q", "c", "q"))
params <- list(nthread = 1)
model_unnamed <- xgb.train(data = dm_unnamed, params = params, nrounds = 3)
model_feature_names <- xgb.train(data = dm_feature_names, params = params, nrounds = 3)
model_feature_types <- xgb.train(data = dm_feature_types, params = params, nrounds = 3)
model_both <- xgb.train(data = dm_both, params = params, nrounds = 3)
expect_null(getinfo(model_unnamed, "feature_name"))
expect_equal(getinfo(model_feature_names, "feature_name"), c("a", "b", "c"))
expect_null(getinfo(model_feature_types, "feature_name"))
expect_equal(getinfo(model_both, "feature_name"), c("a", "b", "c"))
expect_null(variable.names(model_unnamed))
expect_equal(variable.names(model_feature_names), c("a", "b", "c"))
expect_null(variable.names(model_feature_types))
expect_equal(variable.names(model_both), c("a", "b", "c"))
expect_null(getinfo(model_unnamed, "feature_type"))
expect_null(getinfo(model_feature_names, "feature_type"))
expect_equal(getinfo(model_feature_types, "feature_type"), c("q", "c", "q"))
expect_equal(getinfo(model_both, "feature_type"), c("q", "c", "q"))
})
test_that("Seed in params override PRNG from R", {
set.seed(123)
model1 <- xgb.train(
data = xgb.DMatrix(
agaricus.train$data,
label = agaricus.train$label, nthread = 1L
),
params = list(
objective = "binary:logistic",
max_depth = 3L,
subsample = 0.1,
colsample_bytree = 0.1,
seed = 111L
),
nrounds = 3L
)
set.seed(456)
model2 <- xgb.train(
data = xgb.DMatrix(
agaricus.train$data,
label = agaricus.train$label, nthread = 1L
),
params = list(
objective = "binary:logistic",
max_depth = 3L,
subsample = 0.1,
colsample_bytree = 0.1,
seed = 111L
),
nrounds = 3L
)
expect_equal(
xgb.save.raw(model1, raw_format = "json"),
xgb.save.raw(model2, raw_format = "json")
)
set.seed(123)
model3 <- xgb.train(
data = xgb.DMatrix(
agaricus.train$data,
label = agaricus.train$label, nthread = 1L
),
params = list(
objective = "binary:logistic",
max_depth = 3L,
subsample = 0.1,
colsample_bytree = 0.1,
seed = 222L
),
nrounds = 3L
)
expect_false(
isTRUE(
all.equal(
xgb.save.raw(model1, raw_format = "json"),
xgb.save.raw(model3, raw_format = "json")
)
)
)
})