* Apply Configurable to objective functions. * Apply Model to Learner and Regtree, gbm. * Add Load/SaveConfig to objs. * Refactor obj tests to use smart pointer. * Dummy methods for Save/Load Model.
222 lines
6.4 KiB
C++
222 lines
6.4 KiB
C++
// Copyright by Contributors
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/tree_model.h>
|
|
#include "../helpers.h"
|
|
#include "dmlc/filesystem.h"
|
|
|
|
namespace xgboost {
|
|
// Manually construct tree in binary format
|
|
// Do not use structs in case they change
|
|
// We want to preserve backwards compatibility
|
|
TEST(Tree, Load) {
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string tmp_file = tempdir.path + "/tree.model";
|
|
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(tmp_file.c_str(), "w"));
|
|
|
|
// Write params
|
|
EXPECT_EQ(sizeof(TreeParam), (31 + 6) * sizeof(int));
|
|
int num_roots = 1;
|
|
int num_nodes = 2;
|
|
int num_deleted = 0;
|
|
int max_depth = 1;
|
|
int num_feature = 0;
|
|
int size_leaf_vector = 0;
|
|
int reserved[31];
|
|
fo->Write(&num_roots, sizeof(int));
|
|
fo->Write(&num_nodes, sizeof(int));
|
|
fo->Write(&num_deleted, sizeof(int));
|
|
fo->Write(&max_depth, sizeof(int));
|
|
fo->Write(&num_feature, sizeof(int));
|
|
fo->Write(&size_leaf_vector, sizeof(int));
|
|
fo->Write(reserved, sizeof(int) * 31);
|
|
|
|
// Write 2 nodes
|
|
EXPECT_EQ(sizeof(RegTree::Node),
|
|
3 * sizeof(int) + 1 * sizeof(unsigned) + sizeof(float));
|
|
int parent = -1;
|
|
int cleft = 1;
|
|
int cright = -1;
|
|
unsigned sindex = 5;
|
|
float split_or_weight = 0.5;
|
|
fo->Write(&parent, sizeof(int));
|
|
fo->Write(&cleft, sizeof(int));
|
|
fo->Write(&cright, sizeof(int));
|
|
fo->Write(&sindex, sizeof(unsigned));
|
|
fo->Write(&split_or_weight, sizeof(float));
|
|
parent = 0;
|
|
cleft = -1;
|
|
cright = -1;
|
|
sindex = 2;
|
|
split_or_weight = 0.1;
|
|
fo->Write(&parent, sizeof(int));
|
|
fo->Write(&cleft, sizeof(int));
|
|
fo->Write(&cright, sizeof(int));
|
|
fo->Write(&sindex, sizeof(unsigned));
|
|
fo->Write(&split_or_weight, sizeof(float));
|
|
|
|
// Write 2x node stats
|
|
EXPECT_EQ(sizeof(RTreeNodeStat), 3 * sizeof(float) + sizeof(int));
|
|
bst_float loss_chg = 5.0;
|
|
bst_float sum_hess = 1.0;
|
|
bst_float base_weight = 3.0;
|
|
int leaf_child_cnt = 0;
|
|
fo->Write(&loss_chg, sizeof(float));
|
|
fo->Write(&sum_hess, sizeof(float));
|
|
fo->Write(&base_weight, sizeof(float));
|
|
fo->Write(&leaf_child_cnt, sizeof(int));
|
|
|
|
loss_chg = 50.0;
|
|
sum_hess = 10.0;
|
|
base_weight = 30.0;
|
|
leaf_child_cnt = 0;
|
|
fo->Write(&loss_chg, sizeof(float));
|
|
fo->Write(&sum_hess, sizeof(float));
|
|
fo->Write(&base_weight, sizeof(float));
|
|
fo->Write(&leaf_child_cnt, sizeof(int));
|
|
fo.reset();
|
|
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(tmp_file.c_str(), "r"));
|
|
|
|
xgboost::RegTree tree;
|
|
tree.LoadModel(fi.get());
|
|
EXPECT_EQ(tree.GetDepth(1), 1);
|
|
EXPECT_EQ(tree[0].SplitCond(), 0.5f);
|
|
EXPECT_EQ(tree[0].SplitIndex(), 5);
|
|
EXPECT_EQ(tree[1].LeafValue(), 0.1f);
|
|
EXPECT_TRUE(tree[1].IsLeaf());
|
|
}
|
|
|
|
TEST(Tree, AllocateNode) {
|
|
RegTree tree;
|
|
tree.ExpandNode(
|
|
0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
tree.CollapseToLeaf(0, 0);
|
|
ASSERT_EQ(tree.NumExtraNodes(), 0);
|
|
|
|
tree.ExpandNode(
|
|
0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
|
|
|
auto& nodes = tree.GetNodes();
|
|
ASSERT_FALSE(nodes.at(1).IsDeleted());
|
|
ASSERT_TRUE(nodes.at(1).IsLeaf());
|
|
ASSERT_TRUE(nodes.at(2).IsLeaf());
|
|
}
|
|
|
|
RegTree ConstructTree() {
|
|
RegTree tree;
|
|
tree.ExpandNode(
|
|
/*nid=*/0, /*split_index=*/0, /*split_value=*/0.0f,
|
|
/*default_left=*/true,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
auto left = tree[0].LeftChild();
|
|
auto right = tree[0].RightChild();
|
|
tree.ExpandNode(
|
|
/*nid=*/left, /*split_index=*/1, /*split_value=*/1.0f,
|
|
/*default_left=*/false,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
tree.ExpandNode(
|
|
/*nid=*/right, /*split_index=*/2, /*split_value=*/2.0f,
|
|
/*default_left=*/false,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
|
|
return tree;
|
|
}
|
|
|
|
TEST(Tree, DumpJson) {
|
|
auto tree = ConstructTree();
|
|
FeatureMap fmap;
|
|
auto str = tree.DumpModel(fmap, true, "json");
|
|
size_t n_leaves = 0;
|
|
size_t iter = 0;
|
|
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
|
|
n_leaves++;
|
|
}
|
|
ASSERT_EQ(n_leaves, 4);
|
|
|
|
size_t n_conditions = 0;
|
|
iter = 0;
|
|
while ((iter = str.find("split_condition", iter + 1)) != std::string::npos) {
|
|
n_conditions++;
|
|
}
|
|
ASSERT_EQ(n_conditions, 3);
|
|
|
|
fmap.PushBack(0, "feat_0", "i");
|
|
fmap.PushBack(1, "feat_1", "q");
|
|
fmap.PushBack(2, "feat_2", "int");
|
|
|
|
str = tree.DumpModel(fmap, true, "json");
|
|
ASSERT_NE(str.find(R"("split": "feat_0")"), std::string::npos);
|
|
ASSERT_NE(str.find(R"("split": "feat_1")"), std::string::npos);
|
|
ASSERT_NE(str.find(R"("split": "feat_2")"), std::string::npos);
|
|
|
|
str = tree.DumpModel(fmap, false, "json");
|
|
ASSERT_EQ(str.find("cover"), std::string::npos);
|
|
}
|
|
|
|
TEST(Tree, DumpText) {
|
|
auto tree = ConstructTree();
|
|
FeatureMap fmap;
|
|
auto str = tree.DumpModel(fmap, true, "text");
|
|
size_t n_leaves = 0;
|
|
size_t iter = 0;
|
|
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
|
|
n_leaves++;
|
|
}
|
|
ASSERT_EQ(n_leaves, 4);
|
|
|
|
iter = 0;
|
|
size_t n_conditions = 0;
|
|
while ((iter = str.find("gain", iter + 1)) != std::string::npos) {
|
|
n_conditions++;
|
|
}
|
|
ASSERT_EQ(n_conditions, 3);
|
|
|
|
ASSERT_NE(str.find("[f0<0]"), std::string::npos);
|
|
ASSERT_NE(str.find("[f1<1]"), std::string::npos);
|
|
ASSERT_NE(str.find("[f2<2]"), std::string::npos);
|
|
|
|
fmap.PushBack(0, "feat_0", "i");
|
|
fmap.PushBack(1, "feat_1", "q");
|
|
fmap.PushBack(2, "feat_2", "int");
|
|
|
|
str = tree.DumpModel(fmap, true, "text");
|
|
ASSERT_NE(str.find("[feat_0]"), std::string::npos);
|
|
ASSERT_NE(str.find("[feat_1<1]"), std::string::npos);
|
|
ASSERT_NE(str.find("[feat_2<2]"), std::string::npos);
|
|
|
|
str = tree.DumpModel(fmap, false, "text");
|
|
ASSERT_EQ(str.find("cover"), std::string::npos);
|
|
}
|
|
|
|
TEST(Tree, DumpDot) {
|
|
auto tree = ConstructTree();
|
|
FeatureMap fmap;
|
|
auto str = tree.DumpModel(fmap, true, "dot");
|
|
|
|
size_t n_leaves = 0;
|
|
size_t iter = 0;
|
|
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
|
|
n_leaves++;
|
|
}
|
|
ASSERT_EQ(n_leaves, 4);
|
|
|
|
size_t n_edges = 0;
|
|
iter = 0;
|
|
while ((iter = str.find("->", iter + 1)) != std::string::npos) {
|
|
n_edges++;
|
|
}
|
|
ASSERT_EQ(n_edges, 6);
|
|
|
|
fmap.PushBack(0, "feat_0", "i");
|
|
fmap.PushBack(1, "feat_1", "q");
|
|
fmap.PushBack(2, "feat_2", "int");
|
|
|
|
str = tree.DumpModel(fmap, true, "dot");
|
|
ASSERT_NE(str.find(R"("feat_0")"), std::string::npos);
|
|
ASSERT_NE(str.find(R"(feat_1<1)"), std::string::npos);
|
|
ASSERT_NE(str.find(R"(feat_2<2)"), std::string::npos);
|
|
|
|
str = tree.DumpModel(fmap, true, R"(dot:{"graph_attrs": {"bgcolor": "#FFFF00"}})");
|
|
ASSERT_NE(str.find(R"(graph [ bgcolor="#FFFF00" ])"), std::string::npos);
|
|
}
|
|
} // namespace xgboost
|