2024-09-24 14:09:32 +08:00

156 lines
5.0 KiB
Python

from typing import List
import numpy as np
import pandas as pd
import pytest
from xgboost import testing as tm
pytestmark = [pytest.mark.skipif(**tm.no_spark())]
from xgboost import DMatrix, QuantileDMatrix
from xgboost.spark.data import (
_read_csr_matrix_from_unwrapped_spark_vec,
alias,
create_dmatrix_from_partitions,
stack_series,
)
def test_stack() -> None:
a = pd.DataFrame({"a": [[1, 2], [3, 4]]})
b = stack_series(a["a"])
assert b.shape == (2, 2)
a = pd.DataFrame({"a": [[1], [3]]})
b = stack_series(a["a"])
assert b.shape == (2, 1)
a = pd.DataFrame({"a": [np.array([1, 2]), np.array([3, 4])]})
b = stack_series(a["a"])
assert b.shape == (2, 2)
a = pd.DataFrame({"a": [np.array([1]), np.array([3])]})
b = stack_series(a["a"])
assert b.shape == (2, 1)
def run_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool, on_gpu: bool) -> None:
rng = np.random.default_rng(0)
dfs: List[pd.DataFrame] = []
n_features = 16
n_samples_per_batch = 16
n_batches = 10
feature_types = ["float"] * n_features
for i in range(n_batches):
X = rng.normal(loc=0, size=256).reshape(n_samples_per_batch, n_features)
y = rng.normal(loc=0, size=n_samples_per_batch)
m = rng.normal(loc=0, size=n_samples_per_batch)
w = rng.normal(loc=0.5, scale=0.5, size=n_samples_per_batch)
w -= w.min()
valid = rng.binomial(n=1, p=0.5, size=16).astype(np.bool_)
df = pd.DataFrame(
{alias.label: y, alias.margin: m, alias.weight: w, alias.valid: valid}
)
if is_feature_cols:
for j in range(X.shape[1]):
df[f"feat-{j}"] = pd.Series(X[:, j])
else:
df[alias.data] = pd.Series(list(X))
dfs.append(df)
kwargs = {"feature_types": feature_types}
device_id = 0 if on_gpu else None
cols = [f"feat-{i}" for i in range(n_features)]
feature_cols = cols if is_feature_cols else None
train_Xy, valid_Xy = create_dmatrix_from_partitions(
iterator=iter(dfs),
feature_cols=feature_cols,
dev_ordinal=device_id,
use_qdm=is_qdm,
kwargs=kwargs,
enable_sparse_data_optim=False,
has_validation_col=True,
)
if is_qdm:
assert isinstance(train_Xy, QuantileDMatrix)
assert isinstance(valid_Xy, QuantileDMatrix)
else:
assert not isinstance(train_Xy, QuantileDMatrix)
assert isinstance(train_Xy, DMatrix)
assert not isinstance(valid_Xy, QuantileDMatrix)
assert isinstance(valid_Xy, DMatrix)
assert valid_Xy is not None
assert valid_Xy.num_row() + train_Xy.num_row() == n_samples_per_batch * n_batches
assert train_Xy.num_col() == n_features
assert valid_Xy.num_col() == n_features
df = pd.concat(dfs, axis=0)
df_train = df.loc[~df[alias.valid], :]
df_valid = df.loc[df[alias.valid], :]
assert df_train.shape[0] == train_Xy.num_row()
assert df_valid.shape[0] == valid_Xy.num_row()
# margin
np.testing.assert_allclose(
df_train[alias.margin].to_numpy(), train_Xy.get_base_margin()
)
np.testing.assert_allclose(
df_valid[alias.margin].to_numpy(), valid_Xy.get_base_margin()
)
# weight
np.testing.assert_allclose(df_train[alias.weight].to_numpy(), train_Xy.get_weight())
np.testing.assert_allclose(df_valid[alias.weight].to_numpy(), valid_Xy.get_weight())
# label
np.testing.assert_allclose(df_train[alias.label].to_numpy(), train_Xy.get_label())
np.testing.assert_allclose(df_valid[alias.label].to_numpy(), valid_Xy.get_label())
np.testing.assert_equal(train_Xy.feature_types, feature_types)
np.testing.assert_equal(valid_Xy.feature_types, feature_types)
@pytest.mark.parametrize(
"is_feature_cols,is_qdm",
[(True, True), (True, False), (False, True), (False, False)],
)
def test_dmatrix_ctor(is_feature_cols: bool, is_qdm: bool) -> None:
run_dmatrix_ctor(is_feature_cols, is_qdm, on_gpu=False)
def test_read_csr_matrix_from_unwrapped_spark_vec() -> None:
from scipy.sparse import csr_matrix
pd1 = pd.DataFrame(
{
"featureVectorType": [0, 1, 1, 0],
"featureVectorSize": [3, None, None, 3],
"featureVectorIndices": [
np.array([0, 2], dtype=np.int32),
None,
None,
np.array([1, 2], dtype=np.int32),
],
"featureVectorValues": [
np.array([3.0, 0.0], dtype=np.float64),
np.array([13.0, 14.0, 0.0], dtype=np.float64),
np.array([0.0, 24.0, 25.0], dtype=np.float64),
np.array([0.0, 35.0], dtype=np.float64),
],
}
)
sm = _read_csr_matrix_from_unwrapped_spark_vec(pd1)
assert isinstance(sm, csr_matrix)
np.testing.assert_array_equal(
sm.data, [3.0, 0.0, 13.0, 14.0, 0.0, 0.0, 24.0, 25.0, 0.0, 35.0]
)
np.testing.assert_array_equal(sm.indptr, [0, 2, 5, 8, 10])
np.testing.assert_array_equal(sm.indices, [0, 2, 0, 1, 2, 0, 1, 2, 1, 2])
assert sm.shape == (4, 3)