- Remove parameter serialization in the scikit-learn interface. The scikit-lear interface `save_model` will save only the model and discard all hyper-parameters. This is to align with the native XGBoost interface, which distinguishes the hyper-parameter and model parameters. With the scikit-learn interface, model parameters are attributes of the estimator. For instance, `n_features_in_`, `n_classes_` are always accessible with `estimator.n_features_in_` and `estimator.n_classes_`, but not with the `estimator.get_params`. - Define a `load_model` method for classifier to load its own attributes. - Set n_estimators to None by default.
1539 lines
50 KiB
Python
1539 lines
50 KiB
Python
import json
|
|
import os
|
|
import pickle
|
|
import random
|
|
import tempfile
|
|
from typing import Callable, Optional
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from sklearn.utils.estimator_checks import parametrize_with_checks
|
|
|
|
import xgboost as xgb
|
|
from xgboost import testing as tm
|
|
from xgboost.testing.ranking import run_ranking_qid_df
|
|
from xgboost.testing.shared import get_feature_weights, validate_data_initialization
|
|
from xgboost.testing.updater import get_basescore
|
|
|
|
rng = np.random.RandomState(1994)
|
|
pytestmark = [pytest.mark.skipif(**tm.no_sklearn()), tm.timeout(30)]
|
|
|
|
|
|
def test_binary_classification():
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import KFold
|
|
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for cls in (xgb.XGBClassifier, xgb.XGBRFClassifier):
|
|
for train_index, test_index in kf.split(X, y):
|
|
clf = cls(random_state=42)
|
|
xgb_model = clf.fit(X[train_index], y[train_index], eval_metric=['auc', 'logloss'])
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
err = sum(1 for i in range(len(preds))
|
|
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
|
|
|
|
@pytest.mark.parametrize("objective", ["multi:softmax", "multi:softprob"])
|
|
def test_multiclass_classification(objective):
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.model_selection import KFold
|
|
|
|
def check_pred(preds, labels, output_margin):
|
|
if output_margin:
|
|
err = sum(
|
|
1 for i in range(len(preds)) if preds[i].argmax() != labels[i]
|
|
) / float(len(preds))
|
|
else:
|
|
err = sum(1 for i in range(len(preds)) if preds[i] != labels[i]) / float(
|
|
len(preds)
|
|
)
|
|
assert err < 0.4
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBClassifier(objective=objective).fit(
|
|
X[train_index], y[train_index]
|
|
)
|
|
assert xgb_model.get_booster().num_boosted_rounds() == 100
|
|
preds = xgb_model.predict(X[test_index])
|
|
# test other params in XGBClassifier().fit
|
|
preds2 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=3)
|
|
preds3 = xgb_model.predict(X[test_index], output_margin=True, ntree_limit=0)
|
|
preds4 = xgb_model.predict(X[test_index], output_margin=False, ntree_limit=3)
|
|
labels = y[test_index]
|
|
|
|
check_pred(preds, labels, output_margin=False)
|
|
check_pred(preds2, labels, output_margin=True)
|
|
check_pred(preds3, labels, output_margin=True)
|
|
check_pred(preds4, labels, output_margin=False)
|
|
|
|
cls = xgb.XGBClassifier(n_estimators=4).fit(X, y)
|
|
assert cls.n_classes_ == 3
|
|
proba = cls.predict_proba(X)
|
|
assert proba.shape[0] == X.shape[0]
|
|
assert proba.shape[1] == cls.n_classes_
|
|
|
|
# custom objective, the default is multi:softprob so no transformation is required.
|
|
cls = xgb.XGBClassifier(n_estimators=4, objective=tm.softprob_obj(3)).fit(X, y)
|
|
proba = cls.predict_proba(X)
|
|
assert proba.shape[0] == X.shape[0]
|
|
assert proba.shape[1] == cls.n_classes_
|
|
|
|
|
|
def test_best_ntree_limit():
|
|
from sklearn.datasets import load_iris
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
def train(booster, forest):
|
|
rounds = 4
|
|
cls = xgb.XGBClassifier(
|
|
n_estimators=rounds, num_parallel_tree=forest, booster=booster
|
|
).fit(
|
|
X, y, eval_set=[(X, y)], early_stopping_rounds=3
|
|
)
|
|
|
|
if forest:
|
|
assert cls.best_ntree_limit == rounds * forest
|
|
else:
|
|
assert cls.best_ntree_limit == 0
|
|
|
|
# best_ntree_limit is used by default, assert that under gblinear it's
|
|
# automatically ignored due to being 0.
|
|
cls.predict(X)
|
|
|
|
num_parallel_tree = 4
|
|
train('gbtree', num_parallel_tree)
|
|
train('dart', num_parallel_tree)
|
|
train('gblinear', None)
|
|
|
|
|
|
def test_ranking():
|
|
# generate random data
|
|
x_train = np.random.rand(1000, 10)
|
|
y_train = np.random.randint(5, size=1000)
|
|
train_group = np.repeat(50, 20)
|
|
|
|
x_valid = np.random.rand(200, 10)
|
|
y_valid = np.random.randint(5, size=200)
|
|
valid_group = np.repeat(50, 4)
|
|
|
|
x_test = np.random.rand(100, 10)
|
|
|
|
params = {
|
|
"tree_method": "exact",
|
|
"learning_rate": 0.1,
|
|
"gamma": 1.0,
|
|
"min_child_weight": 0.1,
|
|
"max_depth": 6,
|
|
"eval_metric": "ndcg",
|
|
"n_estimators": 4,
|
|
}
|
|
model = xgb.sklearn.XGBRanker(**params)
|
|
model.fit(
|
|
x_train,
|
|
y_train,
|
|
group=train_group,
|
|
eval_set=[(x_valid, y_valid)],
|
|
eval_group=[valid_group],
|
|
)
|
|
assert model.evals_result()
|
|
|
|
pred = model.predict(x_test)
|
|
|
|
train_data = xgb.DMatrix(x_train, y_train)
|
|
valid_data = xgb.DMatrix(x_valid, y_valid)
|
|
test_data = xgb.DMatrix(x_test)
|
|
train_data.set_group(train_group)
|
|
assert train_data.get_label().shape[0] == x_train.shape[0]
|
|
valid_data.set_group(valid_group)
|
|
|
|
params_orig = {
|
|
"tree_method": "exact",
|
|
"objective": "rank:pairwise",
|
|
"eta": 0.1,
|
|
"gamma": 1.0,
|
|
"min_child_weight": 0.1,
|
|
"max_depth": 6,
|
|
"eval_metric": "ndcg",
|
|
}
|
|
xgb_model_orig = xgb.train(
|
|
params_orig, train_data, num_boost_round=4, evals=[(valid_data, "validation")]
|
|
)
|
|
pred_orig = xgb_model_orig.predict(test_data)
|
|
|
|
np.testing.assert_almost_equal(pred, pred_orig)
|
|
|
|
|
|
def test_ranking_metric() -> None:
|
|
from sklearn.metrics import roc_auc_score
|
|
|
|
X, y, qid, w = tm.make_ltr(512, 4, 3, 2)
|
|
# use auc for test as ndcg_score in sklearn works only on label gain instead of exp
|
|
# gain.
|
|
# note that the auc in sklearn is different from the one in XGBoost. The one in
|
|
# sklearn compares the number of mis-classified docs, while the one in xgboost
|
|
# compares the number of mis-classified pairs.
|
|
ltr = xgb.XGBRanker(
|
|
eval_metric=roc_auc_score,
|
|
n_estimators=10,
|
|
tree_method="hist",
|
|
max_depth=2,
|
|
objective="rank:pairwise",
|
|
)
|
|
ltr.fit(
|
|
X,
|
|
y,
|
|
qid=qid,
|
|
sample_weight=w,
|
|
eval_set=[(X, y)],
|
|
eval_qid=[qid],
|
|
sample_weight_eval_set=[w],
|
|
verbose=True,
|
|
)
|
|
results = ltr.evals_result()
|
|
assert results["validation_0"]["roc_auc_score"][-1] > 0.6
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_ranking_qid_df():
|
|
import pandas as pd
|
|
|
|
run_ranking_qid_df(pd, "hist")
|
|
|
|
|
|
def test_stacking_regression():
|
|
from sklearn.datasets import load_diabetes
|
|
from sklearn.ensemble import RandomForestRegressor, StackingRegressor
|
|
from sklearn.linear_model import RidgeCV
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
X, y = load_diabetes(return_X_y=True)
|
|
estimators = [
|
|
('gbm', xgb.sklearn.XGBRegressor(objective='reg:squarederror')),
|
|
('lr', RidgeCV())
|
|
]
|
|
reg = StackingRegressor(
|
|
estimators=estimators,
|
|
final_estimator=RandomForestRegressor(n_estimators=10,
|
|
random_state=42)
|
|
)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
|
|
reg.fit(X_train, y_train).score(X_test, y_test)
|
|
|
|
|
|
def test_stacking_classification():
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.ensemble import StackingClassifier
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.pipeline import make_pipeline
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.svm import LinearSVC
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
estimators = [
|
|
('gbm', xgb.sklearn.XGBClassifier()),
|
|
('svr', make_pipeline(StandardScaler(),
|
|
LinearSVC(random_state=42)))
|
|
]
|
|
clf = StackingClassifier(
|
|
estimators=estimators, final_estimator=LogisticRegression()
|
|
)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
|
|
clf.fit(X_train, y_train).score(X_test, y_test)
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_feature_importances_weight():
|
|
from sklearn.datasets import load_digits
|
|
|
|
digits = load_digits(n_class=2)
|
|
y = digits["target"]
|
|
X = digits["data"]
|
|
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0,
|
|
tree_method="exact",
|
|
learning_rate=0.1,
|
|
importance_type="weight",
|
|
base_score=0.5,
|
|
).fit(X, y)
|
|
|
|
exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.00833333, 0.,
|
|
0., 0., 0., 0., 0., 0., 0., 0.025, 0.14166667, 0., 0., 0.,
|
|
0., 0., 0., 0.00833333, 0.25833333, 0., 0., 0., 0.,
|
|
0.03333334, 0.03333334, 0., 0.32499999, 0., 0., 0., 0.,
|
|
0.05, 0.06666667, 0., 0., 0., 0., 0., 0., 0., 0.04166667,
|
|
0., 0., 0., 0., 0., 0., 0., 0.00833333, 0., 0., 0., 0.,
|
|
0.], dtype=np.float32)
|
|
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
# numeric columns
|
|
import pandas as pd
|
|
y = pd.Series(digits['target'])
|
|
X = pd.DataFrame(digits['data'])
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0,
|
|
tree_method="exact",
|
|
learning_rate=0.1,
|
|
base_score=.5,
|
|
importance_type="weight"
|
|
).fit(X, y)
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0,
|
|
tree_method="exact",
|
|
learning_rate=0.1,
|
|
importance_type="weight",
|
|
base_score=.5,
|
|
).fit(X, y)
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
with pytest.raises(ValueError):
|
|
xgb_model.set_params(importance_type="foo")
|
|
xgb_model.feature_importances_
|
|
|
|
X, y = load_digits(n_class=3, return_X_y=True)
|
|
|
|
cls = xgb.XGBClassifier(booster="gblinear", n_estimators=4)
|
|
cls.fit(X, y)
|
|
assert cls.feature_importances_.shape[0] == X.shape[1]
|
|
assert cls.feature_importances_.shape[1] == 3
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "model.json")
|
|
cls.save_model(path)
|
|
with open(path, "r") as fd:
|
|
model = json.load(fd)
|
|
weights = np.array(
|
|
model["learner"]["gradient_booster"]["model"]["weights"]
|
|
).reshape((cls.n_features_in_ + 1, 3))
|
|
weights = weights[:-1, ...]
|
|
np.testing.assert_allclose(
|
|
weights / weights.sum(), cls.feature_importances_, rtol=1e-6
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
cls.set_params(importance_type="cover")
|
|
cls.feature_importances_
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_feature_importances_gain():
|
|
from sklearn.datasets import load_digits
|
|
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0, tree_method="exact",
|
|
learning_rate=0.1,
|
|
importance_type="gain",
|
|
base_score=0.5,
|
|
).fit(X, y)
|
|
|
|
exp = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
0.00326159, 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
0.00297238, 0.00988034, 0., 0., 0., 0., 0., 0.,
|
|
0.03512521, 0.41123885, 0., 0., 0., 0.,
|
|
0.01326332, 0.00160674, 0., 0.4206952, 0., 0., 0.,
|
|
0., 0.00616747, 0.01237546, 0., 0., 0., 0., 0.,
|
|
0., 0., 0.08240705, 0., 0., 0., 0., 0., 0., 0.,
|
|
0.00100649, 0., 0., 0., 0., 0.], dtype=np.float32)
|
|
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
# numeric columns
|
|
import pandas as pd
|
|
y = pd.Series(digits['target'])
|
|
X = pd.DataFrame(digits['data'])
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0,
|
|
tree_method="exact",
|
|
learning_rate=0.1,
|
|
importance_type="gain",
|
|
base_score=0.5,
|
|
).fit(X, y)
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
xgb_model = xgb.XGBClassifier(
|
|
random_state=0,
|
|
tree_method="exact",
|
|
learning_rate=0.1,
|
|
importance_type="gain",
|
|
base_score=0.5,
|
|
).fit(X, y)
|
|
np.testing.assert_almost_equal(xgb_model.feature_importances_, exp)
|
|
|
|
# no split can be found
|
|
cls = xgb.XGBClassifier(min_child_weight=1000, tree_method="hist", n_estimators=1)
|
|
cls.fit(X, y)
|
|
assert np.all(cls.feature_importances_ == 0)
|
|
|
|
|
|
def test_select_feature():
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.feature_selection import SelectFromModel
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
cls = xgb.XGBClassifier()
|
|
cls.fit(X, y)
|
|
selector = SelectFromModel(cls, prefit=True, max_features=1)
|
|
X_selected = selector.transform(X)
|
|
assert X_selected.shape[1] == 1
|
|
|
|
|
|
def test_num_parallel_tree():
|
|
from sklearn.datasets import load_diabetes
|
|
|
|
reg = xgb.XGBRegressor(n_estimators=4, num_parallel_tree=4, tree_method="hist")
|
|
X, y = load_diabetes(return_X_y=True)
|
|
bst = reg.fit(X=X, y=y)
|
|
dump = bst.get_booster().get_dump(dump_format="json")
|
|
assert len(dump) == 16
|
|
|
|
reg = xgb.XGBRFRegressor(n_estimators=4)
|
|
bst = reg.fit(X=X, y=y)
|
|
dump = bst.get_booster().get_dump(dump_format="json")
|
|
assert len(dump) == 4
|
|
|
|
config = json.loads(bst.get_booster().save_config())
|
|
assert (
|
|
int(
|
|
config["learner"]["gradient_booster"]["gbtree_model_param"][
|
|
"num_parallel_tree"
|
|
]
|
|
)
|
|
== 4
|
|
)
|
|
|
|
|
|
def test_regression():
|
|
from sklearn.datasets import fetch_california_housing
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import KFold
|
|
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBRegressor().fit(X[train_index], y[train_index])
|
|
|
|
preds = xgb_model.predict(X[test_index])
|
|
# test other params in XGBRegressor().fit
|
|
preds2 = xgb_model.predict(X[test_index], output_margin=True,
|
|
ntree_limit=3)
|
|
preds3 = xgb_model.predict(X[test_index], output_margin=True,
|
|
ntree_limit=0)
|
|
preds4 = xgb_model.predict(X[test_index], output_margin=False,
|
|
ntree_limit=3)
|
|
labels = y[test_index]
|
|
|
|
assert mean_squared_error(preds, labels) < 25
|
|
assert mean_squared_error(preds2, labels) < 350
|
|
assert mean_squared_error(preds3, labels) < 25
|
|
assert mean_squared_error(preds4, labels) < 350
|
|
|
|
with pytest.raises(AttributeError, match="feature_names_in_"):
|
|
xgb_model.feature_names_in_
|
|
|
|
|
|
def run_housing_rf_regression(tree_method):
|
|
from sklearn.datasets import fetch_california_housing
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import KFold
|
|
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBRFRegressor(random_state=42, tree_method=tree_method).fit(
|
|
X[train_index], y[train_index]
|
|
)
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
assert mean_squared_error(preds, labels) < 35
|
|
|
|
rfreg = xgb.XGBRFRegressor()
|
|
with pytest.raises(NotImplementedError):
|
|
rfreg.fit(X, y, early_stopping_rounds=10)
|
|
|
|
|
|
def test_rf_regression():
|
|
run_housing_rf_regression("hist")
|
|
|
|
|
|
def test_parameter_tuning():
|
|
from sklearn.datasets import fetch_california_housing
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
xgb_model = xgb.XGBRegressor(learning_rate=0.1)
|
|
clf = GridSearchCV(xgb_model, {'max_depth': [2, 4],
|
|
'n_estimators': [50, 200]},
|
|
cv=2, verbose=1)
|
|
clf.fit(X, y)
|
|
assert clf.best_score_ < 0.7
|
|
assert clf.best_params_ == {'n_estimators': 200, 'max_depth': 4}
|
|
|
|
|
|
def test_regression_with_custom_objective():
|
|
from sklearn.datasets import fetch_california_housing
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import KFold
|
|
|
|
def objective_ls(y_true, y_pred):
|
|
grad = (y_pred - y_true)
|
|
hess = np.ones(len(y_true))
|
|
return grad, hess
|
|
|
|
X, y = fetch_california_housing(return_X_y=True)
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBRegressor(objective=objective_ls).fit(
|
|
X[train_index], y[train_index]
|
|
)
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
assert mean_squared_error(preds, labels) < 25
|
|
|
|
# Test that the custom objective function is actually used
|
|
class XGBCustomObjectiveException(Exception):
|
|
pass
|
|
|
|
def dummy_objective(y_true, y_pred):
|
|
raise XGBCustomObjectiveException()
|
|
|
|
xgb_model = xgb.XGBRegressor(objective=dummy_objective)
|
|
np.testing.assert_raises(XGBCustomObjectiveException, xgb_model.fit, X, y)
|
|
|
|
|
|
def test_classification_with_custom_objective():
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import KFold
|
|
|
|
def logregobj(y_true, y_pred):
|
|
y_pred = 1.0 / (1.0 + np.exp(-y_pred))
|
|
grad = y_pred - y_true
|
|
hess = y_pred * (1.0 - y_pred)
|
|
return grad, hess
|
|
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBClassifier(objective=logregobj)
|
|
xgb_model.fit(X[train_index], y[train_index])
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
err = sum(1 for i in range(len(preds))
|
|
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
|
|
# Test that the custom objective function is actually used
|
|
class XGBCustomObjectiveException(Exception):
|
|
pass
|
|
|
|
def dummy_objective(y_true, y_preds):
|
|
raise XGBCustomObjectiveException()
|
|
|
|
xgb_model = xgb.XGBClassifier(objective=dummy_objective)
|
|
np.testing.assert_raises(
|
|
XGBCustomObjectiveException,
|
|
xgb_model.fit,
|
|
X, y
|
|
)
|
|
|
|
cls = xgb.XGBClassifier(n_estimators=1)
|
|
cls.fit(X, y)
|
|
|
|
is_called = [False]
|
|
|
|
def wrapped(y, p):
|
|
is_called[0] = True
|
|
return logregobj(y, p)
|
|
|
|
cls.set_params(objective=wrapped)
|
|
cls.predict(X) # no throw
|
|
cls.fit(X, y)
|
|
|
|
assert is_called[0]
|
|
|
|
|
|
def run_sklearn_api(booster, error, n_est):
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
iris = load_iris()
|
|
tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target,
|
|
train_size=120, test_size=0.2)
|
|
|
|
classifier = xgb.XGBClassifier(booster=booster, n_estimators=n_est)
|
|
classifier.fit(tr_d, tr_l)
|
|
|
|
preds = classifier.predict(te_d)
|
|
labels = te_l
|
|
err = sum([1 for p, l in zip(preds, labels) if p != l]) * 1.0 / len(te_l)
|
|
assert err < error
|
|
|
|
|
|
def test_sklearn_api():
|
|
run_sklearn_api("gbtree", 0.2, 10)
|
|
run_sklearn_api("gblinear", 0.5, 100)
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_matplotlib())
|
|
@pytest.mark.skipif(**tm.no_graphviz())
|
|
def test_sklearn_plotting():
|
|
from sklearn.datasets import load_iris
|
|
|
|
iris = load_iris()
|
|
|
|
classifier = xgb.XGBClassifier()
|
|
classifier.fit(iris.data, iris.target)
|
|
|
|
import matplotlib
|
|
matplotlib.use('Agg')
|
|
|
|
from graphviz import Source
|
|
from matplotlib.axes import Axes
|
|
|
|
ax = xgb.plot_importance(classifier)
|
|
assert isinstance(ax, Axes)
|
|
assert ax.get_title() == 'Feature importance'
|
|
assert ax.get_xlabel() == 'F score'
|
|
assert ax.get_ylabel() == 'Features'
|
|
assert len(ax.patches) == 4
|
|
|
|
g = xgb.to_graphviz(classifier, num_trees=0)
|
|
assert isinstance(g, Source)
|
|
|
|
ax = xgb.plot_tree(classifier, num_trees=0)
|
|
assert isinstance(ax, Axes)
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_sklearn_nfolds_cv():
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import StratifiedKFold
|
|
|
|
digits = load_digits(n_class=3)
|
|
X = digits['data']
|
|
y = digits['target']
|
|
dm = xgb.DMatrix(X, label=y)
|
|
|
|
params = {
|
|
'max_depth': 2,
|
|
'eta': 1,
|
|
'verbosity': 0,
|
|
'objective':
|
|
'multi:softprob',
|
|
'num_class': 3
|
|
}
|
|
|
|
seed = 2016
|
|
nfolds = 5
|
|
skf = StratifiedKFold(n_splits=nfolds, shuffle=True, random_state=seed)
|
|
|
|
cv1 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
|
|
seed=seed, as_pandas=True)
|
|
cv2 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
|
|
folds=skf, seed=seed, as_pandas=True)
|
|
cv3 = xgb.cv(params, dm, num_boost_round=10, nfold=nfolds,
|
|
stratified=True, seed=seed, as_pandas=True)
|
|
assert cv1.shape[0] == cv2.shape[0] and cv2.shape[0] == cv3.shape[0]
|
|
assert cv2.iloc[-1, 0] == cv3.iloc[-1, 0]
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_split_value_histograms():
|
|
from sklearn.datasets import load_digits
|
|
|
|
digits_2class = load_digits(n_class=2)
|
|
|
|
X = digits_2class["data"]
|
|
y = digits_2class["target"]
|
|
|
|
dm = xgb.DMatrix(X, label=y)
|
|
params = {
|
|
"max_depth": 6,
|
|
"eta": 0.01,
|
|
"verbosity": 0,
|
|
"objective": "binary:logistic",
|
|
"base_score": 0.5,
|
|
}
|
|
|
|
gbdt = xgb.train(params, dm, num_boost_round=10)
|
|
assert gbdt.get_split_value_histogram("not_there", as_pandas=True).shape[0] == 0
|
|
assert gbdt.get_split_value_histogram("not_there", as_pandas=False).shape[0] == 0
|
|
assert gbdt.get_split_value_histogram("f28", bins=0).shape[0] == 1
|
|
assert gbdt.get_split_value_histogram("f28", bins=1).shape[0] == 1
|
|
assert gbdt.get_split_value_histogram("f28", bins=2).shape[0] == 2
|
|
assert gbdt.get_split_value_histogram("f28", bins=5).shape[0] == 2
|
|
assert gbdt.get_split_value_histogram("f28", bins=None).shape[0] == 2
|
|
|
|
|
|
def test_sklearn_random_state():
|
|
clf = xgb.XGBClassifier(random_state=402)
|
|
assert clf.get_xgb_params()['random_state'] == 402
|
|
|
|
clf = xgb.XGBClassifier(random_state=401)
|
|
assert clf.get_xgb_params()['random_state'] == 401
|
|
|
|
random_state = np.random.RandomState(seed=403)
|
|
clf = xgb.XGBClassifier(random_state=random_state)
|
|
assert isinstance(clf.get_xgb_params()['random_state'], int)
|
|
|
|
|
|
def test_sklearn_n_jobs():
|
|
clf = xgb.XGBClassifier(n_jobs=1)
|
|
assert clf.get_xgb_params()['n_jobs'] == 1
|
|
|
|
clf = xgb.XGBClassifier(n_jobs=2)
|
|
assert clf.get_xgb_params()['n_jobs'] == 2
|
|
|
|
|
|
def test_parameters_access():
|
|
from sklearn import datasets
|
|
|
|
params = {"updater": "grow_gpu_hist", "subsample": 0.5, "n_jobs": -1}
|
|
clf = xgb.XGBClassifier(n_estimators=1000, **params)
|
|
assert clf.get_params()["updater"] == "grow_gpu_hist"
|
|
assert clf.get_params()["subsample"] == 0.5
|
|
assert clf.get_params()["n_estimators"] == 1000
|
|
|
|
clf = xgb.XGBClassifier(n_estimators=1, nthread=4)
|
|
X, y = datasets.load_iris(return_X_y=True)
|
|
clf.fit(X, y)
|
|
|
|
config = json.loads(clf.get_booster().save_config())
|
|
assert int(config["learner"]["generic_param"]["nthread"]) == 4
|
|
|
|
clf.set_params(nthread=16)
|
|
config = json.loads(clf.get_booster().save_config())
|
|
assert int(config["learner"]["generic_param"]["nthread"]) == 16
|
|
|
|
clf.predict(X)
|
|
config = json.loads(clf.get_booster().save_config())
|
|
assert int(config["learner"]["generic_param"]["nthread"]) == 16
|
|
|
|
clf = xgb.XGBClassifier(n_estimators=2)
|
|
assert clf.tree_method is None
|
|
assert clf.get_params()["tree_method"] is None
|
|
clf.fit(X, y)
|
|
assert clf.get_params()["tree_method"] is None
|
|
|
|
def save_load(clf: xgb.XGBClassifier) -> xgb.XGBClassifier:
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "model.json")
|
|
clf.save_model(path)
|
|
clf = xgb.XGBClassifier()
|
|
clf.load_model(path)
|
|
return clf
|
|
|
|
def get_tm(clf: xgb.XGBClassifier) -> str:
|
|
tm = json.loads(clf.get_booster().save_config())["learner"]["gradient_booster"][
|
|
"gbtree_train_param"
|
|
]["tree_method"]
|
|
return tm
|
|
|
|
assert get_tm(clf) == "exact"
|
|
|
|
clf = pickle.loads(pickle.dumps(clf))
|
|
|
|
assert clf.tree_method is None
|
|
assert clf.n_estimators == 2
|
|
assert clf.get_params()["tree_method"] is None
|
|
assert clf.get_params()["n_estimators"] == 2
|
|
assert get_tm(clf) == "exact" # preserved for pickle
|
|
|
|
clf = save_load(clf)
|
|
|
|
assert clf.tree_method is None
|
|
assert clf.n_estimators is None
|
|
assert clf.get_params()["tree_method"] is None
|
|
assert clf.get_params()["n_estimators"] is None
|
|
assert get_tm(clf) == "auto" # discarded for save/load_model
|
|
|
|
clf.set_params(tree_method="hist")
|
|
assert clf.get_params()["tree_method"] == "hist"
|
|
clf = pickle.loads(pickle.dumps(clf))
|
|
assert clf.get_params()["tree_method"] == "hist"
|
|
clf = save_load(clf)
|
|
assert clf.get_params()["tree_method"] is None
|
|
|
|
|
|
def test_kwargs_error():
|
|
params = {'updater': 'grow_gpu_hist', 'subsample': .5, 'n_jobs': -1}
|
|
with pytest.raises(TypeError):
|
|
clf = xgb.XGBClassifier(n_jobs=1000, **params)
|
|
assert isinstance(clf, xgb.XGBClassifier)
|
|
|
|
|
|
def test_kwargs_grid_search():
|
|
from sklearn import datasets
|
|
from sklearn.model_selection import GridSearchCV
|
|
|
|
params = {'tree_method': 'hist'}
|
|
clf = xgb.XGBClassifier(n_estimators=1, learning_rate=1.0, **params)
|
|
assert clf.get_params()['tree_method'] == 'hist'
|
|
# 'max_leaves' is not a default argument of XGBClassifier
|
|
# Check we can still do grid search over this parameter
|
|
search_params = {'max_leaves': range(2, 5)}
|
|
grid_cv = GridSearchCV(clf, search_params, cv=5)
|
|
iris = datasets.load_iris()
|
|
grid_cv.fit(iris.data, iris.target)
|
|
|
|
# Expect unique results for each parameter value
|
|
# This confirms sklearn is able to successfully update the parameter
|
|
means = grid_cv.cv_results_['mean_test_score']
|
|
assert len(means) == len(set(means))
|
|
|
|
|
|
def test_sklearn_clone():
|
|
from sklearn.base import clone
|
|
|
|
clf = xgb.XGBClassifier(n_jobs=2)
|
|
clf.n_jobs = -1
|
|
clone(clf)
|
|
|
|
|
|
def test_sklearn_get_default_params():
|
|
from sklearn.datasets import load_digits
|
|
|
|
digits_2class = load_digits(n_class=2)
|
|
X = digits_2class["data"]
|
|
y = digits_2class["target"]
|
|
cls = xgb.XGBClassifier()
|
|
assert cls.get_params()["base_score"] is None
|
|
cls.fit(X[:4, ...], y[:4, ...])
|
|
base_score = get_basescore(cls)
|
|
np.testing.assert_equal(base_score, 0.5)
|
|
|
|
|
|
def run_validation_weights(model):
|
|
from sklearn.datasets import make_hastie_10_2
|
|
|
|
# prepare training and test data
|
|
X, y = make_hastie_10_2(n_samples=2000, random_state=42)
|
|
labels, y = np.unique(y, return_inverse=True)
|
|
X_train, X_test = X[:1600], X[1600:]
|
|
y_train, y_test = y[:1600], y[1600:]
|
|
|
|
# instantiate model
|
|
param_dist = {'objective': 'binary:logistic', 'n_estimators': 2,
|
|
'random_state': 123}
|
|
clf = model(**param_dist)
|
|
|
|
# train it using instance weights only in the training set
|
|
weights_train = np.random.choice([1, 2], len(X_train))
|
|
clf.fit(X_train, y_train,
|
|
sample_weight=weights_train,
|
|
eval_set=[(X_test, y_test)],
|
|
eval_metric='logloss',
|
|
verbose=False)
|
|
|
|
# evaluate logloss metric on test set *without* using weights
|
|
evals_result_without_weights = clf.evals_result()
|
|
logloss_without_weights = evals_result_without_weights[
|
|
"validation_0"]["logloss"]
|
|
|
|
# now use weights for the test set
|
|
np.random.seed(0)
|
|
weights_test = np.random.choice([1, 2], len(X_test))
|
|
clf.fit(X_train, y_train,
|
|
sample_weight=weights_train,
|
|
eval_set=[(X_test, y_test)],
|
|
sample_weight_eval_set=[weights_test],
|
|
eval_metric='logloss',
|
|
verbose=False)
|
|
evals_result_with_weights = clf.evals_result()
|
|
logloss_with_weights = evals_result_with_weights["validation_0"]["logloss"]
|
|
|
|
# check that the logloss in the test set is actually different when using
|
|
# weights than when not using them
|
|
assert all((logloss_with_weights[i] != logloss_without_weights[i]
|
|
for i in [0, 1]))
|
|
|
|
with pytest.raises(ValueError):
|
|
# length of eval set and sample weight doesn't match.
|
|
clf.fit(X_train, y_train, sample_weight=weights_train,
|
|
eval_set=[(X_train, y_train), (X_test, y_test)],
|
|
sample_weight_eval_set=[weights_train])
|
|
|
|
with pytest.raises(ValueError):
|
|
cls = xgb.XGBClassifier()
|
|
cls.fit(X_train, y_train, sample_weight=weights_train,
|
|
eval_set=[(X_train, y_train), (X_test, y_test)],
|
|
sample_weight_eval_set=[weights_train])
|
|
|
|
|
|
def test_validation_weights():
|
|
run_validation_weights(xgb.XGBModel)
|
|
run_validation_weights(xgb.XGBClassifier)
|
|
|
|
|
|
def save_load_model(model_path):
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import KFold
|
|
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
|
|
for train_index, test_index in kf.split(X, y):
|
|
xgb_model = xgb.XGBClassifier().fit(X[train_index], y[train_index])
|
|
xgb_model.save_model(model_path)
|
|
|
|
xgb_model = xgb.XGBClassifier()
|
|
xgb_model.load_model(model_path)
|
|
|
|
assert isinstance(xgb_model.classes_, np.ndarray)
|
|
np.testing.assert_equal(xgb_model.classes_, np.array([0, 1]))
|
|
assert isinstance(xgb_model._Booster, xgb.Booster)
|
|
|
|
preds = xgb_model.predict(X[test_index])
|
|
labels = y[test_index]
|
|
err = sum(1 for i in range(len(preds))
|
|
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
assert xgb_model.get_booster().attr('scikit_learn') is None
|
|
|
|
# test native booster
|
|
preds = xgb_model.predict(X[test_index], output_margin=True)
|
|
booster = xgb.Booster(model_file=model_path)
|
|
predt_1 = booster.predict(xgb.DMatrix(X[test_index]),
|
|
output_margin=True)
|
|
assert np.allclose(preds, predt_1)
|
|
|
|
with pytest.raises(TypeError):
|
|
xgb_model = xgb.XGBModel()
|
|
xgb_model.load_model(model_path)
|
|
|
|
|
|
def test_save_load_model():
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model_path = os.path.join(tempdir, 'digits.model')
|
|
save_load_model(model_path)
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model_path = os.path.join(tempdir, 'digits.model.json')
|
|
save_load_model(model_path)
|
|
|
|
from sklearn.datasets import load_digits
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model_path = os.path.join(tempdir, 'digits.model.ubj')
|
|
digits = load_digits(n_class=2)
|
|
y = digits['target']
|
|
X = digits['data']
|
|
booster = xgb.train({'tree_method': 'hist',
|
|
'objective': 'binary:logistic'},
|
|
dtrain=xgb.DMatrix(X, y),
|
|
num_boost_round=4)
|
|
predt_0 = booster.predict(xgb.DMatrix(X))
|
|
booster.save_model(model_path)
|
|
cls = xgb.XGBClassifier()
|
|
cls.load_model(model_path)
|
|
|
|
proba = cls.predict_proba(X)
|
|
assert proba.shape[0] == X.shape[0]
|
|
assert proba.shape[1] == 2 # binary
|
|
|
|
predt_1 = cls.predict_proba(X)[:, 1]
|
|
assert np.allclose(predt_0, predt_1)
|
|
|
|
cls = xgb.XGBModel()
|
|
cls.load_model(model_path)
|
|
predt_1 = cls.predict(X)
|
|
assert np.allclose(predt_0, predt_1)
|
|
|
|
# mclass
|
|
X, y = load_digits(n_class=10, return_X_y=True)
|
|
# small test_size to force early stop
|
|
X_train, X_test, y_train, y_test = train_test_split(
|
|
X, y, test_size=0.01, random_state=1
|
|
)
|
|
clf = xgb.XGBClassifier(
|
|
n_estimators=64, tree_method="hist", early_stopping_rounds=2
|
|
)
|
|
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
|
|
score = clf.best_score
|
|
clf.save_model(model_path)
|
|
|
|
clf = xgb.XGBClassifier()
|
|
clf.load_model(model_path)
|
|
assert clf.classes_.size == 10
|
|
np.testing.assert_equal(clf.classes_, np.arange(10))
|
|
assert clf.n_classes_ == 10
|
|
|
|
assert clf.best_iteration == 27
|
|
assert clf.best_score == score
|
|
|
|
|
|
def test_RFECV():
|
|
from sklearn.datasets import load_breast_cancer, load_diabetes, load_iris
|
|
from sklearn.feature_selection import RFECV
|
|
|
|
# Regression
|
|
X, y = load_diabetes(return_X_y=True)
|
|
bst = xgb.XGBRegressor(booster='gblinear', learning_rate=0.1,
|
|
n_estimators=10,
|
|
objective='reg:squarederror',
|
|
random_state=0, verbosity=0)
|
|
rfecv = RFECV(
|
|
estimator=bst, step=1, cv=3, scoring='neg_mean_squared_error')
|
|
rfecv.fit(X, y)
|
|
|
|
# Binary classification
|
|
X, y = load_breast_cancer(return_X_y=True)
|
|
bst = xgb.XGBClassifier(booster='gblinear', learning_rate=0.1,
|
|
n_estimators=10,
|
|
objective='binary:logistic',
|
|
random_state=0, verbosity=0)
|
|
rfecv = RFECV(estimator=bst, step=0.5, cv=3, scoring='roc_auc')
|
|
rfecv.fit(X, y)
|
|
|
|
# Multi-class classification
|
|
X, y = load_iris(return_X_y=True)
|
|
bst = xgb.XGBClassifier(base_score=0.4, booster='gblinear',
|
|
learning_rate=0.1,
|
|
n_estimators=10,
|
|
objective='multi:softprob',
|
|
random_state=0, reg_alpha=0.001, reg_lambda=0.01,
|
|
scale_pos_weight=0.5, verbosity=0)
|
|
rfecv = RFECV(estimator=bst, step=0.5, cv=3, scoring='neg_log_loss')
|
|
rfecv.fit(X, y)
|
|
|
|
X[0:4, :] = np.nan # verify scikit_learn doesn't throw with nan
|
|
reg = xgb.XGBRegressor()
|
|
rfecv = RFECV(estimator=reg)
|
|
rfecv.fit(X, y)
|
|
|
|
cls = xgb.XGBClassifier()
|
|
rfecv = RFECV(estimator=cls, step=0.5, cv=3,
|
|
scoring='neg_mean_squared_error')
|
|
rfecv.fit(X, y)
|
|
|
|
|
|
def test_XGBClassifier_resume():
|
|
from sklearn.datasets import load_breast_cancer
|
|
from sklearn.metrics import log_loss
|
|
|
|
with tempfile.TemporaryDirectory() as tempdir:
|
|
model1_path = os.path.join(tempdir, 'test_XGBClassifier.model')
|
|
model1_booster_path = os.path.join(tempdir, 'test_XGBClassifier.booster')
|
|
|
|
X, Y = load_breast_cancer(return_X_y=True)
|
|
|
|
model1 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=8)
|
|
model1.fit(X, Y)
|
|
|
|
pred1 = model1.predict(X)
|
|
log_loss1 = log_loss(pred1, Y)
|
|
|
|
# file name of stored xgb model
|
|
model1.save_model(model1_path)
|
|
model2 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=8)
|
|
model2.fit(X, Y, xgb_model=model1_path)
|
|
|
|
pred2 = model2.predict(X)
|
|
log_loss2 = log_loss(pred2, Y)
|
|
|
|
assert np.any(pred1 != pred2)
|
|
assert log_loss1 > log_loss2
|
|
|
|
# file name of 'Booster' instance Xgb model
|
|
model1.get_booster().save_model(model1_booster_path)
|
|
model2 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=8)
|
|
model2.fit(X, Y, xgb_model=model1_booster_path)
|
|
|
|
pred2 = model2.predict(X)
|
|
log_loss2 = log_loss(pred2, Y)
|
|
|
|
assert np.any(pred1 != pred2)
|
|
assert log_loss1 > log_loss2
|
|
|
|
|
|
def test_constraint_parameters():
|
|
reg = xgb.XGBRegressor(interaction_constraints="[[0, 1], [2, 3, 4]]")
|
|
X = np.random.randn(10, 10)
|
|
y = np.random.randn(10)
|
|
reg.fit(X, y)
|
|
|
|
config = json.loads(reg.get_booster().save_config())
|
|
assert (
|
|
config["learner"]["gradient_booster"]["tree_train_param"][
|
|
"interaction_constraints"
|
|
]
|
|
== "[[0, 1], [2, 3, 4]]"
|
|
)
|
|
|
|
|
|
def test_parameter_validation():
|
|
reg = xgb.XGBRegressor(foo='bar', verbosity=1)
|
|
X = np.random.randn(10, 10)
|
|
y = np.random.randn(10)
|
|
with tm.captured_output() as (out, err):
|
|
reg.fit(X, y)
|
|
output = out.getvalue().strip()
|
|
|
|
assert output.find('foo') != -1
|
|
|
|
reg = xgb.XGBRegressor(n_estimators=2, missing=3,
|
|
importance_type='gain', verbosity=1)
|
|
X = np.random.randn(10, 10)
|
|
y = np.random.randn(10)
|
|
with tm.captured_output() as (out, err):
|
|
reg.fit(X, y)
|
|
output = out.getvalue().strip()
|
|
|
|
assert len(output) == 0
|
|
|
|
|
|
def test_deprecate_position_arg():
|
|
from sklearn.datasets import load_digits
|
|
X, y = load_digits(return_X_y=True, n_class=2)
|
|
w = y
|
|
with pytest.warns(FutureWarning):
|
|
xgb.XGBRegressor(3, learning_rate=0.1)
|
|
model = xgb.XGBRegressor(n_estimators=1)
|
|
with pytest.warns(FutureWarning):
|
|
model.fit(X, y, w)
|
|
|
|
with pytest.warns(FutureWarning):
|
|
xgb.XGBClassifier(1)
|
|
model = xgb.XGBClassifier(n_estimators=1)
|
|
with pytest.warns(FutureWarning):
|
|
model.fit(X, y, w)
|
|
|
|
with pytest.warns(FutureWarning):
|
|
xgb.XGBRanker('rank:ndcg', learning_rate=0.1)
|
|
model = xgb.XGBRanker(n_estimators=1)
|
|
group = np.repeat(1, X.shape[0])
|
|
with pytest.warns(FutureWarning):
|
|
model.fit(X, y, group)
|
|
|
|
with pytest.warns(FutureWarning):
|
|
xgb.XGBRFRegressor(1, learning_rate=0.1)
|
|
model = xgb.XGBRFRegressor(n_estimators=1)
|
|
with pytest.warns(FutureWarning):
|
|
model.fit(X, y, w)
|
|
|
|
model = xgb.XGBRFClassifier(n_estimators=1)
|
|
with pytest.warns(FutureWarning):
|
|
model.fit(X, y, w)
|
|
|
|
|
|
@pytest.mark.skipif(**tm.no_pandas())
|
|
def test_pandas_input():
|
|
import pandas as pd
|
|
from sklearn.calibration import CalibratedClassifierCV
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
kRows = 100
|
|
kCols = 6
|
|
|
|
X = rng.randint(low=0, high=2, size=kRows * kCols)
|
|
X = X.reshape(kRows, kCols)
|
|
|
|
df = pd.DataFrame(X)
|
|
feature_names = []
|
|
for i in range(1, kCols):
|
|
feature_names += ["k" + str(i)]
|
|
|
|
df.columns = ["status"] + feature_names
|
|
|
|
target = df["status"]
|
|
train = df.drop(columns=["status"])
|
|
model = xgb.XGBClassifier()
|
|
model.fit(train, target)
|
|
np.testing.assert_equal(model.feature_names_in_, np.array(feature_names))
|
|
|
|
columns = list(train.columns)
|
|
random.shuffle(columns, lambda: 0.1)
|
|
df_incorrect = df[columns]
|
|
with pytest.raises(ValueError):
|
|
model.predict(df_incorrect)
|
|
|
|
clf_isotonic = CalibratedClassifierCV(model, cv="prefit", method="isotonic")
|
|
clf_isotonic.fit(train, target)
|
|
assert isinstance(
|
|
clf_isotonic.calibrated_classifiers_[0].estimator, xgb.XGBClassifier
|
|
)
|
|
np.testing.assert_allclose(np.array(clf_isotonic.classes_), np.array([0, 1]))
|
|
|
|
train_ser = train["k1"]
|
|
assert isinstance(train_ser, pd.Series)
|
|
model = xgb.XGBClassifier(n_estimators=8)
|
|
model.fit(train_ser, target, eval_set=[(train_ser, target)])
|
|
assert tm.non_increasing(model.evals_result()["validation_0"]["logloss"])
|
|
|
|
|
|
@pytest.mark.parametrize("tree_method", ["approx", "hist"])
|
|
def test_feature_weights(tree_method):
|
|
kRows = 512
|
|
kCols = 64
|
|
X = rng.randn(kRows, kCols)
|
|
y = rng.randn(kRows)
|
|
|
|
fw = np.ones(shape=(kCols,))
|
|
for i in range(kCols):
|
|
fw[i] *= float(i)
|
|
|
|
parser_path = os.path.join(tm.demo_dir(__file__), "json-model", "json_parser.py")
|
|
poly_increasing = get_feature_weights(
|
|
X, y, fw, parser_path, tree_method, xgb.XGBRegressor
|
|
)
|
|
|
|
fw = np.ones(shape=(kCols,))
|
|
for i in range(kCols):
|
|
fw[i] *= float(kCols - i)
|
|
poly_decreasing = get_feature_weights(
|
|
X, y, fw, parser_path, tree_method, xgb.XGBRegressor
|
|
)
|
|
|
|
# Approxmated test, this is dependent on the implementation of random
|
|
# number generator in std library.
|
|
assert poly_increasing[0] > 0.08
|
|
assert poly_decreasing[0] < -0.08
|
|
|
|
|
|
def run_boost_from_prediction_binary(tree_method, X, y, as_frame: Optional[Callable]):
|
|
"""
|
|
Parameters
|
|
----------
|
|
|
|
as_frame: A callable function to convert margin into DataFrame, useful for different
|
|
df implementations.
|
|
"""
|
|
|
|
model_0 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
|
|
)
|
|
model_0.fit(X=X, y=y)
|
|
margin = model_0.predict(X, output_margin=True)
|
|
if as_frame is not None:
|
|
margin = as_frame(margin)
|
|
|
|
model_1 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
|
|
)
|
|
model_1.fit(X=X, y=y, base_margin=margin)
|
|
predictions_1 = model_1.predict(X, base_margin=margin)
|
|
|
|
cls_2 = xgb.XGBClassifier(
|
|
learning_rate=0.3, random_state=0, n_estimators=8, tree_method=tree_method
|
|
)
|
|
cls_2.fit(X=X, y=y)
|
|
predictions_2 = cls_2.predict(X)
|
|
np.testing.assert_allclose(predictions_1, predictions_2)
|
|
|
|
|
|
def run_boost_from_prediction_multi_clasas(
|
|
estimator, tree_method, X, y, as_frame: Optional[Callable]
|
|
):
|
|
# Multi-class
|
|
model_0 = estimator(
|
|
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
|
|
)
|
|
model_0.fit(X=X, y=y)
|
|
margin = model_0.get_booster().inplace_predict(X, predict_type="margin")
|
|
if as_frame is not None:
|
|
margin = as_frame(margin)
|
|
|
|
model_1 = estimator(
|
|
learning_rate=0.3, random_state=0, n_estimators=4, tree_method=tree_method
|
|
)
|
|
model_1.fit(X=X, y=y, base_margin=margin)
|
|
predictions_1 = model_1.get_booster().predict(
|
|
xgb.DMatrix(X, base_margin=margin), output_margin=True
|
|
)
|
|
|
|
model_2 = estimator(
|
|
learning_rate=0.3, random_state=0, n_estimators=8, tree_method=tree_method
|
|
)
|
|
model_2.fit(X=X, y=y)
|
|
predictions_2 = model_2.get_booster().inplace_predict(X, predict_type="margin")
|
|
|
|
if hasattr(predictions_1, "get"):
|
|
predictions_1 = predictions_1.get()
|
|
if hasattr(predictions_2, "get"):
|
|
predictions_2 = predictions_2.get()
|
|
np.testing.assert_allclose(predictions_1, predictions_2, atol=1e-6)
|
|
|
|
|
|
@pytest.mark.parametrize("tree_method", ["hist", "approx", "exact"])
|
|
def test_boost_from_prediction(tree_method):
|
|
import pandas as pd
|
|
from sklearn.datasets import load_breast_cancer, load_iris, make_regression
|
|
|
|
X, y = load_breast_cancer(return_X_y=True)
|
|
|
|
run_boost_from_prediction_binary(tree_method, X, y, None)
|
|
run_boost_from_prediction_binary(tree_method, X, y, pd.DataFrame)
|
|
|
|
X, y = load_iris(return_X_y=True)
|
|
|
|
run_boost_from_prediction_multi_clasas(xgb.XGBClassifier, tree_method, X, y, None)
|
|
run_boost_from_prediction_multi_clasas(
|
|
xgb.XGBClassifier, tree_method, X, y, pd.DataFrame
|
|
)
|
|
|
|
X, y = make_regression(n_samples=100, n_targets=4)
|
|
run_boost_from_prediction_multi_clasas(xgb.XGBRegressor, tree_method, X, y, None)
|
|
|
|
|
|
def test_estimator_type():
|
|
assert xgb.XGBClassifier._estimator_type == "classifier"
|
|
assert xgb.XGBRFClassifier._estimator_type == "classifier"
|
|
assert xgb.XGBRegressor._estimator_type == "regressor"
|
|
assert xgb.XGBRFRegressor._estimator_type == "regressor"
|
|
assert xgb.XGBRanker._estimator_type == "ranker"
|
|
|
|
from sklearn.datasets import load_digits
|
|
|
|
X, y = load_digits(n_class=2, return_X_y=True)
|
|
cls = xgb.XGBClassifier(n_estimators=2).fit(X, y)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "cls.json")
|
|
cls.save_model(path)
|
|
|
|
reg = xgb.XGBRegressor()
|
|
with pytest.raises(TypeError):
|
|
reg.load_model(path)
|
|
|
|
cls = xgb.XGBClassifier()
|
|
cls.load_model(path) # no error
|
|
|
|
|
|
def test_multilabel_classification() -> None:
|
|
from sklearn.datasets import make_multilabel_classification
|
|
|
|
X, y = make_multilabel_classification(
|
|
n_samples=32, n_classes=5, n_labels=3, random_state=0
|
|
)
|
|
clf = xgb.XGBClassifier(tree_method="hist")
|
|
clf.fit(X, y)
|
|
booster = clf.get_booster()
|
|
learner = json.loads(booster.save_config())["learner"]
|
|
assert int(learner["learner_model_param"]["num_target"]) == 5
|
|
|
|
np.testing.assert_allclose(clf.predict(X), y)
|
|
predt = (clf.predict_proba(X) > 0.5).astype(np.int64)
|
|
np.testing.assert_allclose(clf.predict(X), predt)
|
|
assert predt.dtype == np.int64
|
|
|
|
y = y.tolist()
|
|
clf.fit(X, y)
|
|
np.testing.assert_allclose(clf.predict(X), predt)
|
|
|
|
|
|
def test_data_initialization():
|
|
from sklearn.datasets import load_digits
|
|
X, y = load_digits(return_X_y=True)
|
|
validate_data_initialization(xgb.DMatrix, xgb.XGBClassifier, X, y)
|
|
|
|
|
|
@parametrize_with_checks([xgb.XGBRegressor()])
|
|
def test_estimator_reg(estimator, check):
|
|
if os.environ["PYTEST_CURRENT_TEST"].find("check_supervised_y_no_nan") != -1:
|
|
# The test uses float64 and requires the error message to contain:
|
|
#
|
|
# "value too large for dtype(float64)",
|
|
#
|
|
# while XGBoost stores values as float32. But XGBoost does verify the label
|
|
# internally, so we replace this test with custom check.
|
|
rng = np.random.RandomState(888)
|
|
X = rng.randn(10, 5)
|
|
y = np.full(10, np.inf)
|
|
with pytest.raises(
|
|
ValueError, match="contains NaN, infinity or a value too large"
|
|
):
|
|
estimator.fit(X, y)
|
|
return
|
|
if os.environ["PYTEST_CURRENT_TEST"].find("check_estimators_overwrite_params") != -1:
|
|
# A hack to pass the scikit-learn parameter mutation tests. XGBoost regressor
|
|
# returns actual internal default values for parameters in `get_params`, but those
|
|
# are set as `None` in sklearn interface to avoid duplication. So we fit a dummy
|
|
# model and obtain the default parameters here for the mutation tests.
|
|
from sklearn.datasets import make_regression
|
|
X, y = make_regression(n_samples=2, n_features=1)
|
|
estimator.set_params(**xgb.XGBRegressor().fit(X, y).get_params())
|
|
|
|
check(estimator)
|
|
|
|
|
|
def test_categorical():
|
|
X, y = tm.make_categorical(n_samples=32, n_features=2, n_categories=3, onehot=False)
|
|
ft = ["c"] * X.shape[1]
|
|
reg = xgb.XGBRegressor(
|
|
tree_method="hist",
|
|
feature_types=ft,
|
|
max_cat_to_onehot=1,
|
|
enable_categorical=True,
|
|
)
|
|
reg.fit(X.values, y, eval_set=[(X.values, y)])
|
|
from_cat = reg.evals_result()["validation_0"]["rmse"]
|
|
predt_cat = reg.predict(X.values)
|
|
assert reg.get_booster().feature_types == ft
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
path = os.path.join(tmpdir, "model.json")
|
|
reg.save_model(path)
|
|
reg = xgb.XGBRegressor()
|
|
reg.load_model(path)
|
|
assert reg.feature_types == ft
|
|
|
|
onehot, y = tm.make_categorical(
|
|
n_samples=32, n_features=2, n_categories=3, onehot=True
|
|
)
|
|
reg = xgb.XGBRegressor(tree_method="hist")
|
|
reg.fit(onehot, y, eval_set=[(onehot, y)])
|
|
from_enc = reg.evals_result()["validation_0"]["rmse"]
|
|
predt_enc = reg.predict(onehot)
|
|
|
|
np.testing.assert_allclose(from_cat, from_enc)
|
|
np.testing.assert_allclose(predt_cat, predt_enc)
|
|
|
|
|
|
def test_prediction_config():
|
|
reg = xgb.XGBRegressor()
|
|
assert reg._can_use_inplace_predict() is True
|
|
|
|
reg.set_params(predictor="cpu_predictor")
|
|
assert reg._can_use_inplace_predict() is False
|
|
|
|
reg.set_params(predictor="auto")
|
|
assert reg._can_use_inplace_predict() is True
|
|
|
|
reg.set_params(predictor=None)
|
|
assert reg._can_use_inplace_predict() is True
|
|
|
|
reg.set_params(booster="gblinear")
|
|
assert reg._can_use_inplace_predict() is False
|
|
|
|
|
|
def test_evaluation_metric():
|
|
from sklearn.datasets import load_diabetes, load_digits
|
|
from sklearn.metrics import mean_absolute_error
|
|
X, y = load_diabetes(return_X_y=True)
|
|
n_estimators = 16
|
|
|
|
with tm.captured_output() as (out, err):
|
|
reg = xgb.XGBRegressor(
|
|
tree_method="hist",
|
|
eval_metric=mean_absolute_error,
|
|
n_estimators=n_estimators,
|
|
)
|
|
reg.fit(X, y, eval_set=[(X, y)])
|
|
lines = out.getvalue().strip().split('\n')
|
|
|
|
assert len(lines) == n_estimators
|
|
for line in lines:
|
|
assert line.find("mean_absolute_error") != -1
|
|
|
|
def metric(predt: np.ndarray, Xy: xgb.DMatrix):
|
|
y = Xy.get_label()
|
|
return "m", np.abs(predt - y).sum()
|
|
|
|
with pytest.warns(UserWarning):
|
|
reg = xgb.XGBRegressor(
|
|
tree_method="hist",
|
|
n_estimators=1,
|
|
)
|
|
reg.fit(X, y, eval_set=[(X, y)], eval_metric=metric)
|
|
|
|
def merror(y_true: np.ndarray, predt: np.ndarray):
|
|
n_samples = y_true.shape[0]
|
|
assert n_samples == predt.size
|
|
errors = np.zeros(y_true.shape[0])
|
|
errors[y != predt] = 1.0
|
|
return np.sum(errors) / n_samples
|
|
|
|
X, y = load_digits(n_class=10, return_X_y=True)
|
|
|
|
clf = xgb.XGBClassifier(
|
|
tree_method="hist",
|
|
eval_metric=merror,
|
|
n_estimators=16,
|
|
objective="multi:softmax"
|
|
)
|
|
clf.fit(X, y, eval_set=[(X, y)])
|
|
custom = clf.evals_result()
|
|
|
|
clf = xgb.XGBClassifier(
|
|
tree_method="hist",
|
|
eval_metric="merror",
|
|
n_estimators=16,
|
|
objective="multi:softmax"
|
|
)
|
|
clf.fit(X, y, eval_set=[(X, y)])
|
|
internal = clf.evals_result()
|
|
|
|
np.testing.assert_allclose(
|
|
custom["validation_0"]["merror"],
|
|
internal["validation_0"]["merror"],
|
|
atol=1e-6
|
|
)
|
|
|
|
clf = xgb.XGBRFClassifier(
|
|
tree_method="hist", n_estimators=16,
|
|
objective=tm.softprob_obj(10),
|
|
eval_metric=merror,
|
|
)
|
|
with pytest.raises(AssertionError):
|
|
# shape check inside the `merror` function
|
|
clf.fit(X, y, eval_set=[(X, y)])
|
|
|
|
def test_weighted_evaluation_metric():
|
|
from sklearn.datasets import make_hastie_10_2
|
|
from sklearn.metrics import log_loss
|
|
X, y = make_hastie_10_2(n_samples=2000, random_state=42)
|
|
labels, y = np.unique(y, return_inverse=True)
|
|
X_train, X_test = X[:1600], X[1600:]
|
|
y_train, y_test = y[:1600], y[1600:]
|
|
weights_eval_set = np.random.choice([1, 2], len(X_test))
|
|
|
|
np.random.seed(0)
|
|
weights_train = np.random.choice([1, 2], len(X_train))
|
|
|
|
clf = xgb.XGBClassifier(
|
|
tree_method="hist",
|
|
eval_metric=log_loss,
|
|
n_estimators=16,
|
|
objective="binary:logistic",
|
|
)
|
|
clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)],
|
|
sample_weight_eval_set=[weights_eval_set])
|
|
custom = clf.evals_result()
|
|
|
|
clf = xgb.XGBClassifier(
|
|
tree_method="hist",
|
|
eval_metric="logloss",
|
|
n_estimators=16,
|
|
objective="binary:logistic"
|
|
)
|
|
clf.fit(X_train, y_train, sample_weight=weights_train, eval_set=[(X_test, y_test)],
|
|
sample_weight_eval_set=[weights_eval_set])
|
|
internal = clf.evals_result()
|
|
|
|
np.testing.assert_allclose(
|
|
custom["validation_0"]["log_loss"],
|
|
internal["validation_0"]["logloss"],
|
|
atol=1e-6
|
|
)
|