* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
70 lines
2.3 KiB
Plaintext
70 lines
2.3 KiB
Plaintext
// Copyright by Contributors
|
|
#include <xgboost/linear_updater.h>
|
|
#include "../helpers.h"
|
|
#include "xgboost/gbm.h"
|
|
|
|
namespace xgboost {
|
|
|
|
TEST(Linear, GPUCoordinate) {
|
|
auto mat = xgboost::CreateDMatrix(10, 10, 0);
|
|
auto lparam = CreateEmptyGenericParam(0, 1);
|
|
lparam.n_gpus = 1;
|
|
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
|
|
xgboost::LinearUpdater::Create("gpu_coord_descent", &lparam));
|
|
updater->Configure({{"eta", "1."}});
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
|
|
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
|
|
xgboost::gbm::GBLinearModel model;
|
|
model.param.num_feature = (*mat)->Info().num_col_;
|
|
model.param.num_output_group = 1;
|
|
model.LazyInitModel();
|
|
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
|
|
|
|
ASSERT_EQ(model.bias()[0], 5.0f);
|
|
|
|
delete mat;
|
|
}
|
|
|
|
#if defined(XGBOOST_USE_NCCL)
|
|
TEST(Linear, MGPU_GPUCoordinate) {
|
|
{
|
|
auto mat = xgboost::CreateDMatrix(10, 10, 0);
|
|
auto lparam = CreateEmptyGenericParam(0, -1);
|
|
lparam.n_gpus = -1;
|
|
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
|
|
xgboost::LinearUpdater::Create("gpu_coord_descent", &lparam));
|
|
updater->Configure({{"eta", "1."}});
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
|
|
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
|
|
xgboost::gbm::GBLinearModel model;
|
|
model.param.num_feature = (*mat)->Info().num_col_;
|
|
model.param.num_output_group = 1;
|
|
model.LazyInitModel();
|
|
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
|
|
|
|
ASSERT_EQ(model.bias()[0], 5.0f);
|
|
delete mat;
|
|
}
|
|
|
|
{
|
|
auto lparam = CreateEmptyGenericParam(1, -1);
|
|
lparam.n_gpus = -1;
|
|
auto mat = xgboost::CreateDMatrix(10, 10, 0);
|
|
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
|
|
xgboost::LinearUpdater::Create("gpu_coord_descent", &lparam));
|
|
updater->Configure({{"eta", "1."}});
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
|
|
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
|
|
xgboost::gbm::GBLinearModel model;
|
|
model.param.num_feature = (*mat)->Info().num_col_;
|
|
model.param.num_output_group = 1;
|
|
model.LazyInitModel();
|
|
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
|
|
|
|
ASSERT_EQ(model.bias()[0], 5.0f);
|
|
delete mat;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} // namespace xgboost |