* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
478 lines
17 KiB
C++
478 lines
17 KiB
C++
/*!
|
|
* Copyright 2014 by Contributors
|
|
* \file updater_basemaker-inl.h
|
|
* \brief implement a common tree constructor
|
|
* \author Tianqi Chen
|
|
*/
|
|
#ifndef XGBOOST_TREE_UPDATER_BASEMAKER_INL_H_
|
|
#define XGBOOST_TREE_UPDATER_BASEMAKER_INL_H_
|
|
|
|
#include <rabit/rabit.h>
|
|
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/tree_updater.h>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
#include "./param.h"
|
|
#include "../common/io.h"
|
|
#include "../common/random.h"
|
|
#include "../common/quantile.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
/*!
|
|
* \brief base tree maker class that defines common operation
|
|
* needed in tree making
|
|
*/
|
|
class BaseMaker: public TreeUpdater {
|
|
public:
|
|
void Configure(const Args& args) override {
|
|
param_.InitAllowUnknown(args);
|
|
}
|
|
|
|
protected:
|
|
// helper to collect and query feature meta information
|
|
struct FMetaHelper {
|
|
public:
|
|
/*! \brief find type of each feature, use column format */
|
|
inline void InitByCol(DMatrix* p_fmat,
|
|
const RegTree& tree) {
|
|
fminmax_.resize(tree.param.num_feature * 2);
|
|
std::fill(fminmax_.begin(), fminmax_.end(),
|
|
-std::numeric_limits<bst_float>::max());
|
|
// start accumulating statistics
|
|
for (const auto &batch : p_fmat->GetSortedColumnBatches()) {
|
|
for (bst_uint fid = 0; fid < batch.Size(); ++fid) {
|
|
auto c = batch[fid];
|
|
if (c.size() != 0) {
|
|
CHECK_LT(fid * 2, fminmax_.size());
|
|
fminmax_[fid * 2 + 0] =
|
|
std::max(-c[0].fvalue, fminmax_[fid * 2 + 0]);
|
|
fminmax_[fid * 2 + 1] =
|
|
std::max(c[c.size() - 1].fvalue, fminmax_[fid * 2 + 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*! \brief synchronize the information */
|
|
inline void SyncInfo() {
|
|
rabit::Allreduce<rabit::op::Max>(dmlc::BeginPtr(fminmax_), fminmax_.size());
|
|
}
|
|
// get feature type, 0:empty 1:binary 2:real
|
|
inline int Type(bst_uint fid) const {
|
|
CHECK_LT(fid * 2 + 1, fminmax_.size())
|
|
<< "FeatHelper fid exceed query bound ";
|
|
bst_float a = fminmax_[fid * 2];
|
|
bst_float b = fminmax_[fid * 2 + 1];
|
|
if (a == -std::numeric_limits<bst_float>::max()) return 0;
|
|
if (-a == b) {
|
|
return 1;
|
|
} else {
|
|
return 2;
|
|
}
|
|
}
|
|
inline bst_float MaxValue(bst_uint fid) const {
|
|
return fminmax_[fid *2 + 1];
|
|
}
|
|
inline void SampleCol(float p, std::vector<bst_uint> *p_findex) const {
|
|
std::vector<bst_uint> &findex = *p_findex;
|
|
findex.clear();
|
|
for (size_t i = 0; i < fminmax_.size(); i += 2) {
|
|
const auto fid = static_cast<bst_uint>(i / 2);
|
|
if (this->Type(fid) != 0) findex.push_back(fid);
|
|
}
|
|
auto n = static_cast<unsigned>(p * findex.size());
|
|
std::shuffle(findex.begin(), findex.end(), common::GlobalRandom());
|
|
findex.resize(n);
|
|
// sync the findex if it is subsample
|
|
std::string s_cache;
|
|
common::MemoryBufferStream fc(&s_cache);
|
|
dmlc::Stream& fs = fc;
|
|
if (rabit::GetRank() == 0) {
|
|
fs.Write(findex);
|
|
}
|
|
rabit::Broadcast(&s_cache, 0);
|
|
fs.Read(&findex);
|
|
}
|
|
|
|
private:
|
|
std::vector<bst_float> fminmax_;
|
|
};
|
|
// ------static helper functions ------
|
|
// helper function to get to next level of the tree
|
|
/*! \brief this is helper function for row based data*/
|
|
inline static int NextLevel(const SparsePage::Inst &inst, const RegTree &tree, int nid) {
|
|
const RegTree::Node &n = tree[nid];
|
|
bst_uint findex = n.SplitIndex();
|
|
for (const auto& ins : inst) {
|
|
if (findex == ins.index) {
|
|
if (ins.fvalue < n.SplitCond()) {
|
|
return n.LeftChild();
|
|
} else {
|
|
return n.RightChild();
|
|
}
|
|
}
|
|
}
|
|
return n.DefaultChild();
|
|
}
|
|
// ------class member helpers---------
|
|
/*! \brief initialize temp data structure */
|
|
inline void InitData(const std::vector<GradientPair> &gpair,
|
|
const DMatrix &fmat,
|
|
const RegTree &tree) {
|
|
CHECK_EQ(tree.param.num_nodes, tree.param.num_roots)
|
|
<< "TreeMaker: can only grow new tree";
|
|
const std::vector<unsigned> &root_index = fmat.Info().root_index_;
|
|
{
|
|
// setup position
|
|
position_.resize(gpair.size());
|
|
if (root_index.size() == 0) {
|
|
std::fill(position_.begin(), position_.end(), 0);
|
|
} else {
|
|
for (size_t i = 0; i < position_.size(); ++i) {
|
|
position_[i] = root_index[i];
|
|
CHECK_LT(root_index[i], (unsigned)tree.param.num_roots)
|
|
<< "root index exceed setting";
|
|
}
|
|
}
|
|
// mark delete for the deleted datas
|
|
for (size_t i = 0; i < position_.size(); ++i) {
|
|
if (gpair[i].GetHess() < 0.0f) position_[i] = ~position_[i];
|
|
}
|
|
// mark subsample
|
|
if (param_.subsample < 1.0f) {
|
|
std::bernoulli_distribution coin_flip(param_.subsample);
|
|
auto& rnd = common::GlobalRandom();
|
|
for (size_t i = 0; i < position_.size(); ++i) {
|
|
if (gpair[i].GetHess() < 0.0f) continue;
|
|
if (!coin_flip(rnd)) position_[i] = ~position_[i];
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// expand query
|
|
qexpand_.reserve(256); qexpand_.clear();
|
|
for (int i = 0; i < tree.param.num_roots; ++i) {
|
|
qexpand_.push_back(i);
|
|
}
|
|
this->UpdateNode2WorkIndex(tree);
|
|
}
|
|
}
|
|
/*! \brief update queue expand add in new leaves */
|
|
inline void UpdateQueueExpand(const RegTree &tree) {
|
|
std::vector<int> newnodes;
|
|
for (int nid : qexpand_) {
|
|
if (!tree[nid].IsLeaf()) {
|
|
newnodes.push_back(tree[nid].LeftChild());
|
|
newnodes.push_back(tree[nid].RightChild());
|
|
}
|
|
}
|
|
// use new nodes for qexpand
|
|
qexpand_ = newnodes;
|
|
this->UpdateNode2WorkIndex(tree);
|
|
}
|
|
// return decoded position
|
|
inline int DecodePosition(bst_uint ridx) const {
|
|
const int pid = position_[ridx];
|
|
return pid < 0 ? ~pid : pid;
|
|
}
|
|
// encode the encoded position value for ridx
|
|
inline void SetEncodePosition(bst_uint ridx, int nid) {
|
|
if (position_[ridx] < 0) {
|
|
position_[ridx] = ~nid;
|
|
} else {
|
|
position_[ridx] = nid;
|
|
}
|
|
}
|
|
/*!
|
|
* \brief this is helper function uses column based data structure,
|
|
* reset the positions to the lastest one
|
|
* \param nodes the set of nodes that contains the split to be used
|
|
* \param p_fmat feature matrix needed for tree construction
|
|
* \param tree the regression tree structure
|
|
*/
|
|
inline void ResetPositionCol(const std::vector<int> &nodes,
|
|
DMatrix *p_fmat,
|
|
const RegTree &tree) {
|
|
// set the positions in the nondefault
|
|
this->SetNonDefaultPositionCol(nodes, p_fmat, tree);
|
|
this->SetDefaultPostion(p_fmat, tree);
|
|
}
|
|
/*!
|
|
* \brief helper function to set the non-leaf positions to default direction.
|
|
* This function can be applied multiple times and will get the same result.
|
|
* \param p_fmat feature matrix needed for tree construction
|
|
* \param tree the regression tree structure
|
|
*/
|
|
inline void SetDefaultPostion(DMatrix *p_fmat,
|
|
const RegTree &tree) {
|
|
// set default direct nodes to default
|
|
// for leaf nodes that are not fresh, mark then to ~nid,
|
|
// so that they are ignored in future statistics collection
|
|
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
|
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
|
const int nid = this->DecodePosition(ridx);
|
|
if (tree[nid].IsLeaf()) {
|
|
// mark finish when it is not a fresh leaf
|
|
if (tree[nid].RightChild() == -1) {
|
|
position_[ridx] = ~nid;
|
|
}
|
|
} else {
|
|
// push to default branch
|
|
if (tree[nid].DefaultLeft()) {
|
|
this->SetEncodePosition(ridx, tree[nid].LeftChild());
|
|
} else {
|
|
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*!
|
|
* \brief this is helper function uses column based data structure,
|
|
* to CORRECT the positions of non-default directions that WAS set to default
|
|
* before calling this function.
|
|
* \param batch The column batch
|
|
* \param sorted_split_set The set of index that contains split solutions.
|
|
* \param tree the regression tree structure
|
|
*/
|
|
inline void CorrectNonDefaultPositionByBatch(
|
|
const SparsePage &batch, const std::vector<bst_uint> &sorted_split_set,
|
|
const RegTree &tree) {
|
|
for (size_t fid = 0; fid < batch.Size(); ++fid) {
|
|
auto col = batch[fid];
|
|
auto it = std::lower_bound(sorted_split_set.begin(), sorted_split_set.end(), fid);
|
|
|
|
if (it != sorted_split_set.end() && *it == fid) {
|
|
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
|
const bst_uint ridx = col[j].index;
|
|
const bst_float fvalue = col[j].fvalue;
|
|
const int nid = this->DecodePosition(ridx);
|
|
CHECK(tree[nid].IsLeaf());
|
|
int pid = tree[nid].Parent();
|
|
|
|
// go back to parent, correct those who are not default
|
|
if (!tree[nid].IsRoot() && tree[pid].SplitIndex() == fid) {
|
|
if (fvalue < tree[pid].SplitCond()) {
|
|
this->SetEncodePosition(ridx, tree[pid].LeftChild());
|
|
} else {
|
|
this->SetEncodePosition(ridx, tree[pid].RightChild());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*!
|
|
* \brief this is helper function uses column based data structure,
|
|
* \param nodes the set of nodes that contains the split to be used
|
|
* \param tree the regression tree structure
|
|
* \param out_split_set The split index set
|
|
*/
|
|
inline void GetSplitSet(const std::vector<int> &nodes,
|
|
const RegTree &tree,
|
|
std::vector<unsigned>* out_split_set) {
|
|
std::vector<unsigned>& fsplits = *out_split_set;
|
|
fsplits.clear();
|
|
// step 1, classify the non-default data into right places
|
|
for (int nid : nodes) {
|
|
if (!tree[nid].IsLeaf()) {
|
|
fsplits.push_back(tree[nid].SplitIndex());
|
|
}
|
|
}
|
|
std::sort(fsplits.begin(), fsplits.end());
|
|
fsplits.resize(std::unique(fsplits.begin(), fsplits.end()) - fsplits.begin());
|
|
}
|
|
/*!
|
|
* \brief this is helper function uses column based data structure,
|
|
* update all positions into nondefault branch, if any, ignore the default branch
|
|
* \param nodes the set of nodes that contains the split to be used
|
|
* \param p_fmat feature matrix needed for tree construction
|
|
* \param tree the regression tree structure
|
|
*/
|
|
virtual void SetNonDefaultPositionCol(const std::vector<int> &nodes,
|
|
DMatrix *p_fmat,
|
|
const RegTree &tree) {
|
|
std::vector<unsigned> fsplits;
|
|
this->GetSplitSet(nodes, tree, &fsplits);
|
|
for (const auto &batch : p_fmat->GetSortedColumnBatches()) {
|
|
for (auto fid : fsplits) {
|
|
auto col = batch[fid];
|
|
const auto ndata = static_cast<bst_omp_uint>(col.size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
|
const bst_uint ridx = col[j].index;
|
|
const bst_float fvalue = col[j].fvalue;
|
|
const int nid = this->DecodePosition(ridx);
|
|
// go back to parent, correct those who are not default
|
|
if (!tree[nid].IsLeaf() && tree[nid].SplitIndex() == fid) {
|
|
if (fvalue < tree[nid].SplitCond()) {
|
|
this->SetEncodePosition(ridx, tree[nid].LeftChild());
|
|
} else {
|
|
this->SetEncodePosition(ridx, tree[nid].RightChild());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*! \brief helper function to get statistics from a tree */
|
|
template<typename TStats>
|
|
inline void GetNodeStats(const std::vector<GradientPair> &gpair,
|
|
const DMatrix &fmat,
|
|
const RegTree &tree,
|
|
std::vector< std::vector<TStats> > *p_thread_temp,
|
|
std::vector<TStats> *p_node_stats) {
|
|
std::vector< std::vector<TStats> > &thread_temp = *p_thread_temp;
|
|
thread_temp.resize(omp_get_max_threads());
|
|
p_node_stats->resize(tree.param.num_nodes);
|
|
#pragma omp parallel
|
|
{
|
|
const int tid = omp_get_thread_num();
|
|
thread_temp[tid].resize(tree.param.num_nodes, TStats());
|
|
for (unsigned int nid : qexpand_) {
|
|
thread_temp[tid][nid] = TStats();
|
|
}
|
|
}
|
|
// setup position
|
|
const auto ndata = static_cast<bst_omp_uint>(fmat.Info().num_row_);
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
|
|
const int nid = position_[ridx];
|
|
const int tid = omp_get_thread_num();
|
|
if (nid >= 0) {
|
|
thread_temp[tid][nid].Add(gpair[ridx]);
|
|
}
|
|
}
|
|
// sum the per thread statistics together
|
|
for (int nid : qexpand_) {
|
|
TStats &s = (*p_node_stats)[nid];
|
|
s = TStats();
|
|
for (size_t tid = 0; tid < thread_temp.size(); ++tid) {
|
|
s.Add(thread_temp[tid][nid]);
|
|
}
|
|
}
|
|
}
|
|
/*! \brief common helper data structure to build sketch */
|
|
struct SketchEntry {
|
|
/*! \brief total sum of amount to be met */
|
|
double sum_total;
|
|
/*! \brief statistics used in the sketch */
|
|
double rmin, wmin;
|
|
/*! \brief last seen feature value */
|
|
bst_float last_fvalue;
|
|
/*! \brief current size of sketch */
|
|
double next_goal;
|
|
// pointer to the sketch to put things in
|
|
common::WXQuantileSketch<bst_float, bst_float> *sketch;
|
|
// initialize the space
|
|
inline void Init(unsigned max_size) {
|
|
next_goal = -1.0f;
|
|
rmin = wmin = 0.0f;
|
|
sketch->temp.Reserve(max_size + 1);
|
|
sketch->temp.size = 0;
|
|
}
|
|
/*!
|
|
* \brief push a new element to sketch
|
|
* \param fvalue feature value, comes in sorted ascending order
|
|
* \param w weight
|
|
* \param max_size
|
|
*/
|
|
inline void Push(bst_float fvalue, bst_float w, unsigned max_size) {
|
|
if (next_goal == -1.0f) {
|
|
next_goal = 0.0f;
|
|
last_fvalue = fvalue;
|
|
wmin = w;
|
|
return;
|
|
}
|
|
if (last_fvalue != fvalue) {
|
|
double rmax = rmin + wmin;
|
|
if (rmax >= next_goal && sketch->temp.size != max_size) {
|
|
if (sketch->temp.size == 0 ||
|
|
last_fvalue > sketch->temp.data[sketch->temp.size-1].value) {
|
|
// push to sketch
|
|
sketch->temp.data[sketch->temp.size] =
|
|
common::WXQuantileSketch<bst_float, bst_float>::
|
|
Entry(static_cast<bst_float>(rmin),
|
|
static_cast<bst_float>(rmax),
|
|
static_cast<bst_float>(wmin), last_fvalue);
|
|
CHECK_LT(sketch->temp.size, max_size)
|
|
<< "invalid maximum size max_size=" << max_size
|
|
<< ", stemp.size" << sketch->temp.size;
|
|
++sketch->temp.size;
|
|
}
|
|
if (sketch->temp.size == max_size) {
|
|
next_goal = sum_total * 2.0f + 1e-5f;
|
|
} else {
|
|
next_goal = static_cast<bst_float>(sketch->temp.size * sum_total / max_size);
|
|
}
|
|
} else {
|
|
if (rmax >= next_goal) {
|
|
LOG(TRACKER) << "INFO: rmax=" << rmax
|
|
<< ", sum_total=" << sum_total
|
|
<< ", naxt_goal=" << next_goal
|
|
<< ", size=" << sketch->temp.size;
|
|
}
|
|
}
|
|
rmin = rmax;
|
|
wmin = w;
|
|
last_fvalue = fvalue;
|
|
} else {
|
|
wmin += w;
|
|
}
|
|
}
|
|
/*! \brief push final unfinished value to the sketch */
|
|
inline void Finalize(unsigned max_size) {
|
|
double rmax = rmin + wmin;
|
|
if (sketch->temp.size == 0 || last_fvalue > sketch->temp.data[sketch->temp.size-1].value) {
|
|
CHECK_LE(sketch->temp.size, max_size)
|
|
<< "Finalize: invalid maximum size, max_size=" << max_size
|
|
<< ", stemp.size=" << sketch->temp.size;
|
|
// push to sketch
|
|
sketch->temp.data[sketch->temp.size] =
|
|
common::WXQuantileSketch<bst_float, bst_float>::
|
|
Entry(static_cast<bst_float>(rmin),
|
|
static_cast<bst_float>(rmax),
|
|
static_cast<bst_float>(wmin), last_fvalue);
|
|
++sketch->temp.size;
|
|
}
|
|
sketch->PushTemp();
|
|
}
|
|
};
|
|
/*! \brief training parameter of tree grower */
|
|
TrainParam param_;
|
|
/*! \brief queue of nodes to be expanded */
|
|
std::vector<int> qexpand_;
|
|
/*!
|
|
* \brief map active node to is working index offset in qexpand,
|
|
* can be -1, which means the node is node actively expanding
|
|
*/
|
|
std::vector<int> node2workindex_;
|
|
/*!
|
|
* \brief position of each instance in the tree
|
|
* can be negative, which means this position is no longer expanding
|
|
* see also Decode/EncodePosition
|
|
*/
|
|
std::vector<int> position_;
|
|
|
|
private:
|
|
inline void UpdateNode2WorkIndex(const RegTree &tree) {
|
|
// update the node2workindex
|
|
std::fill(node2workindex_.begin(), node2workindex_.end(), -1);
|
|
node2workindex_.resize(tree.param.num_nodes);
|
|
for (size_t i = 0; i < qexpand_.size(); ++i) {
|
|
node2workindex_[qexpand_[i]] = static_cast<int>(i);
|
|
}
|
|
}
|
|
};
|
|
} // namespace tree
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_TREE_UPDATER_BASEMAKER_INL_H_
|