* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
310 lines
10 KiB
C++
310 lines
10 KiB
C++
/*!
|
|
* Copyright 2014 by Contributors
|
|
* \file gblinear.cc
|
|
* \brief Implementation of Linear booster, with L1/L2 regularization: Elastic Net
|
|
* the update rule is parallel coordinate descent (shotgun)
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <dmlc/omp.h>
|
|
#include <dmlc/parameter.h>
|
|
#include <xgboost/gbm.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/linear_updater.h>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <algorithm>
|
|
#include "../common/timer.h"
|
|
|
|
namespace xgboost {
|
|
namespace gbm {
|
|
|
|
DMLC_REGISTRY_FILE_TAG(gblinear);
|
|
|
|
// training parameters
|
|
struct GBLinearTrainParam : public dmlc::Parameter<GBLinearTrainParam> {
|
|
std::string updater;
|
|
float tolerance;
|
|
size_t max_row_perbatch;
|
|
DMLC_DECLARE_PARAMETER(GBLinearTrainParam) {
|
|
DMLC_DECLARE_FIELD(updater)
|
|
.set_default("shotgun")
|
|
.describe("Update algorithm for linear model. One of shotgun/coord_descent");
|
|
DMLC_DECLARE_FIELD(tolerance)
|
|
.set_lower_bound(0.0f)
|
|
.set_default(0.0f)
|
|
.describe("Stop if largest weight update is smaller than this number.");
|
|
DMLC_DECLARE_FIELD(max_row_perbatch)
|
|
.set_default(std::numeric_limits<size_t>::max())
|
|
.describe("Maximum rows per batch.");
|
|
}
|
|
};
|
|
/*!
|
|
* \brief gradient boosted linear model
|
|
*/
|
|
class GBLinear : public GradientBooster {
|
|
public:
|
|
explicit GBLinear(const std::vector<std::shared_ptr<DMatrix> > &cache,
|
|
bst_float base_margin)
|
|
: base_margin_(base_margin),
|
|
sum_instance_weight_(0),
|
|
sum_weight_complete_(false),
|
|
is_converged_(false) {
|
|
// Add matrices to the prediction cache
|
|
for (auto &d : cache) {
|
|
PredictionCacheEntry e;
|
|
e.data = d;
|
|
cache_[d.get()] = std::move(e);
|
|
}
|
|
}
|
|
void Configure(const Args& cfg) override {
|
|
if (model_.weight.size() == 0) {
|
|
model_.param.InitAllowUnknown(cfg);
|
|
}
|
|
param_.InitAllowUnknown(cfg);
|
|
updater_.reset(LinearUpdater::Create(param_.updater, learner_param_));
|
|
updater_->Configure(cfg);
|
|
monitor_.Init("GBLinear");
|
|
}
|
|
void Load(dmlc::Stream* fi) override {
|
|
model_.Load(fi);
|
|
}
|
|
void Save(dmlc::Stream* fo) const override {
|
|
model_.Save(fo);
|
|
}
|
|
|
|
void DoBoost(DMatrix *p_fmat,
|
|
HostDeviceVector<GradientPair> *in_gpair,
|
|
ObjFunction* obj) override {
|
|
monitor_.Start("DoBoost");
|
|
|
|
model_.LazyInitModel();
|
|
this->LazySumWeights(p_fmat);
|
|
|
|
if (!this->CheckConvergence()) {
|
|
updater_->Update(in_gpair, p_fmat, &model_, sum_instance_weight_);
|
|
}
|
|
this->UpdatePredictionCache();
|
|
|
|
monitor_.Stop("DoBoost");
|
|
}
|
|
|
|
void PredictBatch(DMatrix *p_fmat,
|
|
HostDeviceVector<bst_float> *out_preds,
|
|
unsigned ntree_limit) override {
|
|
monitor_.Start("PredictBatch");
|
|
CHECK_EQ(ntree_limit, 0U)
|
|
<< "GBLinear::Predict ntrees is only valid for gbtree predictor";
|
|
|
|
// Try to predict from cache
|
|
auto it = cache_.find(p_fmat);
|
|
if (it != cache_.end() && it->second.predictions.size() != 0) {
|
|
std::vector<bst_float> &y = it->second.predictions;
|
|
out_preds->Resize(y.size());
|
|
std::copy(y.begin(), y.end(), out_preds->HostVector().begin());
|
|
} else {
|
|
this->PredictBatchInternal(p_fmat, &out_preds->HostVector());
|
|
}
|
|
monitor_.Stop("PredictBatch");
|
|
}
|
|
// add base margin
|
|
void PredictInstance(const SparsePage::Inst &inst,
|
|
std::vector<bst_float> *out_preds,
|
|
unsigned ntree_limit,
|
|
unsigned root_index) override {
|
|
const int ngroup = model_.param.num_output_group;
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
this->Pred(inst, dmlc::BeginPtr(*out_preds), gid, base_margin_);
|
|
}
|
|
}
|
|
|
|
void PredictLeaf(DMatrix *p_fmat,
|
|
std::vector<bst_float> *out_preds,
|
|
unsigned ntree_limit) override {
|
|
LOG(FATAL) << "gblinear does not support prediction of leaf index";
|
|
}
|
|
|
|
void PredictContribution(DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_contribs,
|
|
unsigned ntree_limit, bool approximate, int condition = 0,
|
|
unsigned condition_feature = 0) override {
|
|
model_.LazyInitModel();
|
|
CHECK_EQ(ntree_limit, 0U)
|
|
<< "GBLinear::PredictContribution: ntrees is only valid for gbtree predictor";
|
|
const auto& base_margin = p_fmat->Info().base_margin_.ConstHostVector();
|
|
const int ngroup = model_.param.num_output_group;
|
|
const size_t ncolumns = model_.param.num_feature + 1;
|
|
// allocate space for (#features + bias) times #groups times #rows
|
|
std::vector<bst_float>& contribs = *out_contribs;
|
|
contribs.resize(p_fmat->Info().num_row_ * ncolumns * ngroup);
|
|
// make sure contributions is zeroed, we could be reusing a previously allocated one
|
|
std::fill(contribs.begin(), contribs.end(), 0);
|
|
// start collecting the contributions
|
|
for (const auto &batch : p_fmat->GetRowBatches()) {
|
|
// parallel over local batch
|
|
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
|
auto inst = batch[i];
|
|
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
|
|
// loop over output groups
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
bst_float *p_contribs = &contribs[(row_idx * ngroup + gid) * ncolumns];
|
|
// calculate linear terms' contributions
|
|
for (auto& ins : inst) {
|
|
if (ins.index >= model_.param.num_feature) continue;
|
|
p_contribs[ins.index] = ins.fvalue * model_[ins.index][gid];
|
|
}
|
|
// add base margin to BIAS
|
|
p_contribs[ncolumns - 1] = model_.bias()[gid] +
|
|
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] : base_margin_);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PredictInteractionContributions(DMatrix* p_fmat,
|
|
std::vector<bst_float>* out_contribs,
|
|
unsigned ntree_limit, bool approximate) override {
|
|
std::vector<bst_float>& contribs = *out_contribs;
|
|
|
|
// linear models have no interaction effects
|
|
const size_t nelements = model_.param.num_feature*model_.param.num_feature;
|
|
contribs.resize(p_fmat->Info().num_row_ * nelements * model_.param.num_output_group);
|
|
std::fill(contribs.begin(), contribs.end(), 0);
|
|
}
|
|
|
|
std::vector<std::string> DumpModel(const FeatureMap& fmap,
|
|
bool with_stats,
|
|
std::string format) const override {
|
|
return model_.DumpModel(fmap, with_stats, format);
|
|
}
|
|
|
|
bool UseGPU() const override {
|
|
if (param_.updater == "gpu_coord_descent") {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
protected:
|
|
void PredictBatchInternal(DMatrix *p_fmat,
|
|
std::vector<bst_float> *out_preds) {
|
|
monitor_.Start("PredictBatchInternal");
|
|
model_.LazyInitModel();
|
|
std::vector<bst_float> &preds = *out_preds;
|
|
const auto& base_margin = p_fmat->Info().base_margin_.ConstHostVector();
|
|
// start collecting the prediction
|
|
const int ngroup = model_.param.num_output_group;
|
|
preds.resize(p_fmat->Info().num_row_ * ngroup);
|
|
for (const auto &batch : p_fmat->GetRowBatches()) {
|
|
// output convention: nrow * k, where nrow is number of rows
|
|
// k is number of group
|
|
// parallel over local batch
|
|
const auto nsize = static_cast<omp_ulong>(batch.Size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (omp_ulong i = 0; i < nsize; ++i) {
|
|
const size_t ridx = batch.base_rowid + i;
|
|
// loop over output groups
|
|
for (int gid = 0; gid < ngroup; ++gid) {
|
|
bst_float margin = (base_margin.size() != 0) ?
|
|
base_margin[ridx * ngroup + gid] : base_margin_;
|
|
this->Pred(batch[i], &preds[ridx * ngroup], gid, margin);
|
|
}
|
|
}
|
|
}
|
|
monitor_.Stop("PredictBatchInternal");
|
|
}
|
|
void UpdatePredictionCache() {
|
|
// update cache entry
|
|
for (auto &kv : cache_) {
|
|
PredictionCacheEntry &e = kv.second;
|
|
if (e.predictions.size() == 0) {
|
|
size_t n = model_.param.num_output_group * e.data->Info().num_row_;
|
|
e.predictions.resize(n);
|
|
}
|
|
this->PredictBatchInternal(e.data.get(), &e.predictions);
|
|
}
|
|
}
|
|
|
|
bool CheckConvergence() {
|
|
if (param_.tolerance == 0.0f) return false;
|
|
if (is_converged_) return true;
|
|
if (previous_model_.weight.size() != model_.weight.size()) {
|
|
previous_model_ = model_;
|
|
return false;
|
|
}
|
|
float largest_dw = 0.0;
|
|
for (size_t i = 0; i < model_.weight.size(); i++) {
|
|
largest_dw = std::max(
|
|
largest_dw, std::abs(model_.weight[i] - previous_model_.weight[i]));
|
|
}
|
|
previous_model_ = model_;
|
|
|
|
is_converged_ = largest_dw <= param_.tolerance;
|
|
return is_converged_;
|
|
}
|
|
|
|
void LazySumWeights(DMatrix *p_fmat) {
|
|
if (!sum_weight_complete_) {
|
|
auto &info = p_fmat->Info();
|
|
for (size_t i = 0; i < info.num_row_; i++) {
|
|
sum_instance_weight_ += info.GetWeight(i);
|
|
}
|
|
sum_weight_complete_ = true;
|
|
}
|
|
}
|
|
|
|
inline void Pred(const SparsePage::Inst &inst, bst_float *preds, int gid,
|
|
bst_float base) {
|
|
bst_float psum = model_.bias()[gid] + base;
|
|
for (const auto& ins : inst) {
|
|
if (ins.index >= model_.param.num_feature) continue;
|
|
psum += ins.fvalue * model_[ins.index][gid];
|
|
}
|
|
preds[gid] = psum;
|
|
}
|
|
|
|
// biase margin score
|
|
bst_float base_margin_;
|
|
// model field
|
|
GBLinearModel model_;
|
|
GBLinearModel previous_model_;
|
|
GBLinearTrainParam param_;
|
|
std::unique_ptr<LinearUpdater> updater_;
|
|
double sum_instance_weight_;
|
|
bool sum_weight_complete_;
|
|
common::Monitor monitor_;
|
|
bool is_converged_;
|
|
|
|
/**
|
|
* \struct PredictionCacheEntry
|
|
*
|
|
* \brief Contains pointer to input matrix and associated cached predictions.
|
|
*/
|
|
struct PredictionCacheEntry {
|
|
std::shared_ptr<DMatrix> data;
|
|
std::vector<bst_float> predictions;
|
|
};
|
|
|
|
/**
|
|
* \brief Map of matrices and associated cached predictions to facilitate
|
|
* storing and looking up predictions.
|
|
*/
|
|
std::unordered_map<DMatrix*, PredictionCacheEntry> cache_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(GBLinearModelParam);
|
|
DMLC_REGISTER_PARAMETER(GBLinearTrainParam);
|
|
|
|
XGBOOST_REGISTER_GBM(GBLinear, "gblinear")
|
|
.describe("Linear booster, implement generalized linear model.")
|
|
.set_body([](const std::vector<std::shared_ptr<DMatrix> > &cache,
|
|
bst_float base_margin) {
|
|
return new GBLinear(cache, base_margin);
|
|
});
|
|
} // namespace gbm
|
|
} // namespace xgboost
|