xgboost/tests/cpp/metric/test_elementwise_metric.h
2023-09-20 23:29:51 +08:00

383 lines
16 KiB
C++

/**
* Copyright 2018-2023 by XGBoost contributors
*/
#pragma once
#include <xgboost/json.h>
#include <xgboost/metric.h>
#include <map>
#include <memory>
#include "../../../src/common/linalg_op.h"
#include "../helpers.h"
namespace xgboost::metric {
inline void CheckDeterministicMetricElementWise(StringView name, int32_t device) {
auto ctx = MakeCUDACtx(device);
std::unique_ptr<Metric> metric{Metric::Create(name.c_str(), &ctx)};
HostDeviceVector<float> predts;
size_t n_samples = 2048;
auto p_fmat = EmptyDMatrix();
MetaInfo& info = p_fmat->Info();
info.labels.Reshape(n_samples, 1);
info.num_row_ = n_samples;
auto &h_labels = info.labels.Data()->HostVector();
auto &h_predts = predts.HostVector();
SimpleLCG lcg;
SimpleRealUniformDistribution<float> dist{0.0f, 1.0f};
h_labels.resize(n_samples);
h_predts.resize(n_samples);
for (size_t i = 0; i < n_samples; ++i) {
h_predts[i] = dist(&lcg);
h_labels[i] = dist(&lcg);
}
auto result = metric->Evaluate(predts, p_fmat);
for (size_t i = 0; i < 8; ++i) {
ASSERT_EQ(metric->Evaluate(predts, p_fmat), result);
}
}
inline void VerifyRMSE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("rmse", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "rmse");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.6403f, 0.001f);
auto expected = 2.8284f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected = sqrt(8.0f * collective::GetWorldSize());
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.6708f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"rmse"}, GPUIDX);
}
inline void VerifyRMSLE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("rmsle", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "rmsle");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, {}, {}, data_split_mode),
0.4063f, 1e-4);
auto expected = 0.6212f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected = sqrt(0.3859f * collective::GetWorldSize());
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f},
{ 0, -1, 1, -9, 9}, {}, data_split_mode),
expected, 1e-4);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f},
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f},
{ 0, 1, 2, 9, 8}, {}, data_split_mode),
0.2415f, 1e-4);
delete metric;
CheckDeterministicMetricElementWise(StringView{"rmsle"}, GPUIDX);
}
inline void VerifyMAE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("mae", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "mae");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.5f, 0.001f);
auto expected = 8.0f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.54f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"mae"}, GPUIDX);
}
inline void VerifyMAPE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("mape", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "mape");
EXPECT_NEAR(GetMetricEval(metric, {150, 300}, {100, 200}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{50, 400, 500, 4000},
{100, 200, 500, 1000}, {}, {}, data_split_mode),
1.125f, 0.001f);
auto expected = -26.5f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{50, 400, 500, 4000},
{100, 200, 500, 1000},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{50, 400, 500, 4000},
{100, 200, 500, 1000},
{ 1, 2, 9, 8}, {}, data_split_mode),
1.3250f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"mape"}, GPUIDX);
}
inline void VerifyMPHE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<xgboost::Metric> metric{xgboost::Metric::Create("mphe", &ctx)};
metric->Configure({});
ASSERT_STREQ(metric->Name(), "mphe");
EXPECT_NEAR(GetMetricEval(metric.get(), {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric.get(),
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.1751f, 1e-4);
auto expected = 3.40375f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric.get(),
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 1e-4);
EXPECT_NEAR(GetMetricEval(metric.get(),
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.1922f, 1e-4);
CheckDeterministicMetricElementWise(StringView{"mphe"}, GPUIDX);
metric->Configure({{"huber_slope", "0.1"}});
EXPECT_NEAR(GetMetricEval(metric.get(),
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.0461686f, 1e-4);
}
inline void VerifyLogLoss(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("logloss", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "logloss");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.5f, 1e-17f, 1.0f+1e-17f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.1996f, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
1.2039f, 0.001f);
auto expected = 21.9722f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
1.3138f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"logloss"}, GPUIDX);
}
inline void VerifyError(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("error", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "error");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.5f, 0.001f);
auto expected = 10.0f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.55f, 0.001f);
EXPECT_ANY_THROW(xgboost::Metric::Create("error@abc", &ctx));
delete metric;
metric = xgboost::Metric::Create("error@0.5f", &ctx);
metric->Configure({});
EXPECT_STREQ(metric->Name(), "error");
delete metric;
metric = xgboost::Metric::Create("error@0.1", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "error@0.1");
EXPECT_STREQ(metric->Name(), "error@0.1");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{-0.1f, -0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.25f, 0.001f);
expected = 9.0f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{-0.1f, -0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{-0.1f, -0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
0.45f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"error@0.5"}, GPUIDX);
}
inline void VerifyPoissonNegLogLik(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
xgboost::Metric * metric = xgboost::Metric::Create("poisson-nloglik", &ctx);
metric->Configure({});
ASSERT_STREQ(metric->Name(), "poisson-nloglik");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}, {}, {}, data_split_mode), 0.5f, 1e-10);
EXPECT_NEAR(GetMetricEval(metric,
{0.5f, 1e-17f, 1.0f+1e-17f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
0.6263f, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}, {}, {}, data_split_mode),
1.1019f, 0.001f);
auto expected = 13.3750f;
if (collective::IsDistributed() && data_split_mode == DataSplitMode::kRow) {
expected *= collective::GetWorldSize();
}
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ -1, 1, 9, -9}, {}, data_split_mode),
expected, 0.001f);
EXPECT_NEAR(GetMetricEval(metric,
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1},
{ 1, 2, 9, 8}, {}, data_split_mode),
1.5783f, 0.001f);
delete metric;
CheckDeterministicMetricElementWise(StringView{"poisson-nloglik"}, GPUIDX);
}
inline void VerifyMultiRMSE(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
size_t n_samples = 32, n_targets = 8;
linalg::Tensor<float, 2> y{{n_samples, n_targets}, ctx.Device()};
auto &h_y = y.Data()->HostVector();
std::iota(h_y.begin(), h_y.end(), 0);
HostDeviceVector<float> predt(n_samples * n_targets, 0);
std::unique_ptr<Metric> metric{Metric::Create("rmse", &ctx)};
metric->Configure({});
auto loss = GetMultiMetricEval(metric.get(), predt, y, {}, {}, data_split_mode);
std::vector<float> weights(n_samples, 1);
auto loss_w = GetMultiMetricEval(metric.get(), predt, y, weights, {}, data_split_mode);
std::transform(h_y.cbegin(), h_y.cend(), h_y.begin(), [](auto &v) { return v * v; });
auto ret = std::sqrt(std::accumulate(h_y.cbegin(), h_y.cend(), 1.0, std::plus<>{}) / h_y.size());
ASSERT_FLOAT_EQ(ret, loss);
ASSERT_FLOAT_EQ(ret, loss_w);
}
inline void VerifyQuantile(DataSplitMode data_split_mode = DataSplitMode::kRow) {
auto ctx = MakeCUDACtx(GPUIDX);
std::unique_ptr<Metric> metric{Metric::Create("quantile", &ctx)};
HostDeviceVector<float> predts{0.1f, 0.9f, 0.1f, 0.9f};
std::vector<float> labels{0.5f, 0.5f, 0.9f, 0.1f};
std::vector<float> weights{0.2f, 0.4f, 0.6f, 0.8f};
metric->Configure(Args{{"quantile_alpha", "[0.0]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.400f,
0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.2]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.376f,
0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.4]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.352f,
0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.8]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.304f,
0.001f);
metric->Configure(Args{{"quantile_alpha", "[1.0]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, weights, {}, data_split_mode), 0.28f,
0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.0]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.2]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.4]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
metric->Configure(Args{{"quantile_alpha", "[0.8]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
metric->Configure(Args{{"quantile_alpha", "[1.0]"}});
EXPECT_NEAR(GetMetricEval(metric.get(), predts, labels, {}, {}, data_split_mode), 0.3f, 0.001f);
}
} // namespace xgboost::metric