tqchen 13776a006a Squashed 'subtree/rabit/' changes from 1bb8fe9..4db0a62
4db0a62 bugfix of lazy prepare
87017bd license
dc703e1 license
c171440 change license to bsd
7db2070 Update README.md
581fe06 add mocktest
d2f252f ok
4a5b9e5 add all
12ee049 init version of lbfgs
37a2837 complete lbfgs solver
6ade7cb complete lbfgs

git-subtree-dir: subtree/rabit
git-subtree-split: 4db0a62a068894a55f70bad5e80c33d4434fc834
2015-02-11 20:33:35 -08:00

144 lines
3.5 KiB
C++

/*!
* Copyright (c) 2015 by Contributors
* \file data.h
* \brief simple data structure that could be used by model
*
* \author Tianqi Chen
*/
#ifndef RABIT_LEARN_DATA_H_
#define RABIT_LEARN_DATA_H_
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <limits>
#include <cmath>
#include <rabit.h>
namespace rabit {
// typedef index type
typedef unsigned index_t;
/*! \brief sparse matrix, CSR format */
struct SparseMat {
// sparse matrix entry
struct Entry {
// feature index
index_t findex;
// feature value
float fvalue;
};
// sparse vector
struct Vector {
const Entry *data;
index_t length;
inline const Entry &operator[](size_t i) const {
return data[i];
}
};
inline Vector operator[](size_t i) const {
Vector v;
v.data = &data[0] + row_ptr[i];
v.length = static_cast<index_t>(row_ptr[i + 1]-row_ptr[i]);
return v;
}
// load data from LibSVM format
inline void Load(const char *fname) {
FILE *fi;
if (!strcmp(fname, "stdin")) {
fi = stdin;
} else {
if (strchr(fname, '%') != NULL) {
char s_tmp[256];
snprintf(s_tmp, sizeof(s_tmp), fname, rabit::GetRank());
fi = utils::FopenCheck(s_tmp, "r");
} else {
fi = utils::FopenCheck(fname, "r");
}
}
row_ptr.clear();
row_ptr.push_back(0);
data.clear();
feat_dim = 0;
float label; bool init = true;
char tmp[1024];
while (fscanf(fi, "%s", tmp) == 1) {
Entry e;
unsigned long fidx;
if (sscanf(tmp, "%lu:%f", &fidx, &e.fvalue) == 2) {
e.findex = static_cast<index_t>(fidx);
data.push_back(e);
feat_dim = std::max(fidx, feat_dim);
} else {
if (!init) {
labels.push_back(label);
row_ptr.push_back(data.size());
}
utils::Check(sscanf(tmp, "%f", &label) == 1, "invalid LibSVM format");
init = false;
}
}
// last row
labels.push_back(label);
row_ptr.push_back(data.size());
feat_dim += 1;
utils::Check(feat_dim < std::numeric_limits<index_t>::max(),
"feature dimension exceed limit of index_t"\
"consider change the index_t to unsigned long");
// close the filed
if (fi != stdin) fclose(fi);
}
inline size_t NumRow(void) const {
return row_ptr.size() - 1;
}
// maximum feature dimension
size_t feat_dim;
std::vector<size_t> row_ptr;
std::vector<Entry> data;
std::vector<float> labels;
};
// dense matrix
struct Matrix {
inline void Init(size_t nrow, size_t ncol, float v = 0.0f) {
this->nrow = nrow;
this->ncol = ncol;
data.resize(nrow * ncol);
std::fill(data.begin(), data.end(), v);
}
inline float *operator[](size_t i) {
return &data[0] + i * ncol;
}
inline const float *operator[](size_t i) const {
return &data[0] + i * ncol;
}
inline void Print(const char *fname) {
FILE *fo;
if (!strcmp(fname, "stdout")) {
fo = stdout;
} else {
fo = utils::FopenCheck(fname, "w");
}
for (size_t i = 0; i < data.size(); ++i) {
fprintf(fo, "%g", data[i]);
if ((i+1) % ncol == 0) {
fprintf(fo, "\n");
} else {
fprintf(fo, " ");
}
}
// close the filed
if (fo != stdout) fclose(fo);
}
// number of data
size_t nrow, ncol;
std::vector<float> data;
};
/*!\brief computes a random number modulo the value */
inline int Random(int value) {
return rand() % value;
}
} // namespace rabit
#endif // RABIT_LEARN_DATA_H_