* [WIP] Add lower and upper bounds on the label for survival analysis * Update test MetaInfo.SaveLoadBinary to account for extra two fields * Don't clear qids_ for version 2 of MetaInfo * Add SetInfo() and GetInfo() method for lower and upper bounds * changes to aft * Add parameter class for AFT; use enum's to represent distribution and event type * Add AFT metric * changes to neg grad to grad * changes to binomial loss * changes to overflow * changes to eps * changes to code refactoring * changes to code refactoring * changes to code refactoring * Re-factor survival analysis * Remove aft namespace * Move function bodies out of AFTNormal and AFTLogistic, to reduce clutter * Move function bodies out of AFTLoss, to reduce clutter * Use smart pointer to store AFTDistribution and AFTLoss * Rename AFTNoiseDistribution enum to AFTDistributionType for clarity The enum class was not a distribution itself but a distribution type * Add AFTDistribution::Create() method for convenience * changes to extreme distribution * changes to extreme distribution * changes to extreme * changes to extreme distribution * changes to left censored * deleted cout * changes to x,mu and sd and code refactoring * changes to print * changes to hessian formula in censored and uncensored * changes to variable names and pow * changes to Logistic Pdf * changes to parameter * Expose lower and upper bound labels to R package * Use example weights; normalize log likelihood metric * changes to CHECK * changes to logistic hessian to standard formula * changes to logistic formula * Comply with coding style guideline * Revert back Rabit submodule * Revert dmlc-core submodule * Comply with coding style guideline (clang-tidy) * Fix an error in AFTLoss::Gradient() * Add missing files to amalgamation * Address @RAMitchell's comment: minimize future change in MetaInfo interface * Fix lint * Fix compilation error on 32-bit target, when size_t == bst_uint * Allocate sufficient memory to hold extra label info * Use OpenMP to speed up * Fix compilation on Windows * Address reviewer's feedback * Add unit tests for probability distributions * Make Metric subclass of Configurable * Address reviewer's feedback: Configure() AFT metric * Add a dummy test for AFT metric configuration * Complete AFT configuration test; remove debugging print * Rename AFT parameters * Clarify test comment * Add a dummy test for AFT loss for uncensored case * Fix a bug in AFT loss for uncensored labels * Complete unit test for AFT loss metric * Simplify unit tests for AFT metric * Add unit test to verify aggregate output from AFT metric * Use EXPECT_* instead of ASSERT_*, so that we run all unit tests * Use aft_loss_param when serializing AFTObj This is to be consistent with AFT metric * Add unit tests for AFT Objective * Fix OpenMP bug; clarify semantics for shared variables used in OpenMP loops * Add comments * Remove AFT prefix from probability distribution; put probability distribution in separate source file * Add comments * Define kPI and kEulerMascheroni in probability_distribution.h * Add probability_distribution.cc to amalgamation * Remove unnecessary diff * Address reviewer's feedback: define variables where they're used * Eliminate all INFs and NANs from AFT loss and gradient * Add demo * Add tutorial * Fix lint * Use 'survival:aft' to be consistent with 'survival:cox' * Move sample data to demo/data * Add visual demo with 1D toy data * Add Python tests Co-authored-by: Philip Cho <chohyu01@cs.washington.edu>
170 lines
7.7 KiB
C++
170 lines
7.7 KiB
C++
/*!
|
|
* Copyright (c) by Contributors 2020
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <memory>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <limits>
|
|
#include <cmath>
|
|
|
|
#include "xgboost/metric.h"
|
|
#include "xgboost/logging.h"
|
|
#include "../helpers.h"
|
|
#include "../../../src/common/survival_util.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
/**
|
|
* Reference values obtained from
|
|
* https://github.com/avinashbarnwal/GSOC-2019/blob/master/AFT/R/combined_assignment.R
|
|
**/
|
|
|
|
TEST(Metric, AFTNegLogLik) {
|
|
auto lparam = CreateEmptyGenericParam(-1); // currently AFT metric is CPU only
|
|
|
|
/**
|
|
* Test aggregate output from the AFT metric over a small test data set.
|
|
* This is unlike AFTLoss.* tests, which verify metric values over individual data points.
|
|
**/
|
|
MetaInfo info;
|
|
info.num_row_ = 4;
|
|
info.labels_lower_bound_.HostVector()
|
|
= { 100.0f, -std::numeric_limits<bst_float>::infinity(), 60.0f, 16.0f };
|
|
info.labels_upper_bound_.HostVector()
|
|
= { 100.0f, 20.0f, std::numeric_limits<bst_float>::infinity(), 200.0f };
|
|
info.weights_.HostVector() = std::vector<bst_float>();
|
|
HostDeviceVector<bst_float> preds(4, std::log(64));
|
|
|
|
struct TestCase {
|
|
std::string dist_type;
|
|
bst_float reference_value;
|
|
};
|
|
for (const auto& test_case : std::vector<TestCase>{ {"normal", 2.1508f}, {"logistic", 2.1804f},
|
|
{"extreme", 2.0706f} }) {
|
|
std::unique_ptr<Metric> metric(Metric::Create("aft-nloglik", &lparam));
|
|
metric->Configure({ {"aft_loss_distribution", test_case.dist_type},
|
|
{"aft_loss_distribution_scale", "1.0"} });
|
|
EXPECT_NEAR(metric->Eval(preds, info, false), test_case.reference_value, 1e-4);
|
|
}
|
|
}
|
|
|
|
// Test configuration of AFT metric
|
|
TEST(AFTNegLogLikMetric, Configuration) {
|
|
auto lparam = CreateEmptyGenericParam(-1); // currently AFT metric is CPU only
|
|
std::unique_ptr<Metric> metric(Metric::Create("aft-nloglik", &lparam));
|
|
metric->Configure({{"aft_loss_distribution", "normal"}, {"aft_loss_distribution_scale", "10"}});
|
|
|
|
// Configuration round-trip test
|
|
Json j_obj{ Object() };
|
|
metric->SaveConfig(&j_obj);
|
|
auto aft_param_json = j_obj["aft_loss_param"];
|
|
EXPECT_EQ(get<String>(aft_param_json["aft_loss_distribution"]), "normal");
|
|
EXPECT_EQ(get<String>(aft_param_json["aft_loss_distribution_scale"]), "10");
|
|
}
|
|
|
|
/**
|
|
* AFTLoss.* tests verify metric values over individual data points.
|
|
**/
|
|
|
|
// Generate prediction value ranging from 2**1 to 2**15, using grid points in log scale
|
|
// Then check prediction against the reference values
|
|
static inline void CheckLossOverGridPoints(
|
|
double true_label_lower_bound,
|
|
double true_label_upper_bound,
|
|
ProbabilityDistributionType dist_type,
|
|
const std::vector<double>& reference_values) {
|
|
const int num_point = 20;
|
|
const double log_y_low = 1.0;
|
|
const double log_y_high = 15.0;
|
|
std::unique_ptr<AFTLoss> loss(new AFTLoss(dist_type));
|
|
CHECK_EQ(num_point, reference_values.size());
|
|
for (int i = 0; i < num_point; ++i) {
|
|
const double y_pred
|
|
= std::pow(2.0, i * (log_y_high - log_y_low) / (num_point - 1) + log_y_low);
|
|
const double loss_val
|
|
= loss->Loss(true_label_lower_bound, true_label_upper_bound, std::log(y_pred), 1.0);
|
|
EXPECT_NEAR(loss_val, reference_values[i], 1e-4);
|
|
}
|
|
}
|
|
|
|
TEST(AFTLoss, Uncensored) {
|
|
// Given label 100, compute the AFT loss for various prediction values
|
|
const double true_label_lower_bound = 100.0;
|
|
const double true_label_upper_bound = true_label_lower_bound;
|
|
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kNormal,
|
|
{ 13.1761, 11.3085, 9.7017, 8.3558, 7.2708, 6.4466, 5.8833, 5.5808, 5.5392, 5.7585, 6.2386,
|
|
6.9795, 7.9813, 9.2440, 10.7675, 12.5519, 14.5971, 16.9032, 19.4702, 22.2980 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kLogistic,
|
|
{ 8.5568, 8.0720, 7.6038, 7.1620, 6.7612, 6.4211, 6.1659, 6.0197, 5.9990, 6.1064, 6.3293,
|
|
6.6450, 7.0289, 7.4594, 7.9205, 8.4008, 8.8930, 9.3926, 9.8966, 10.4033 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kExtreme,
|
|
{ 27.6310, 27.6310, 19.7177, 13.0281, 9.2183, 7.1365, 6.0916, 5.6688, 5.6195, 5.7941, 6.1031,
|
|
6.4929, 6.9310, 7.3981, 7.8827, 8.3778, 8.8791, 9.3842, 9.8916, 10.40033 });
|
|
}
|
|
|
|
TEST(AFTLoss, LeftCensored) {
|
|
// Given label (-inf, 20], compute the AFT loss for various prediction values
|
|
const double true_label_lower_bound = -std::numeric_limits<double>::infinity();
|
|
const double true_label_upper_bound = 20.0;
|
|
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kNormal,
|
|
{ 0.0107, 0.0373, 0.1054, 0.2492, 0.5068, 0.9141, 1.5003, 2.2869, 3.2897, 4.5196, 5.9846,
|
|
7.6902, 9.6405, 11.8385, 14.2867, 16.9867, 19.9399, 23.1475, 26.6103, 27.6310 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kLogistic,
|
|
{ 0.0953, 0.1541, 0.2451, 0.3804, 0.5717, 0.8266, 1.1449, 1.5195, 1.9387, 2.3902, 2.8636,
|
|
3.3512, 3.8479, 4.3500, 4.8556, 5.3632, 5.8721, 6.3817, 6.8918, 7.4021 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kExtreme,
|
|
{ 0.0000, 0.0025, 0.0277, 0.1225, 0.3195, 0.6150, 0.9862, 1.4094, 1.8662, 2.3441, 2.8349,
|
|
3.3337, 3.8372, 4.3436, 4.8517, 5.3609, 5.8707, 6.3808, 6.8912, 7.4018 });
|
|
}
|
|
|
|
TEST(AFTLoss, RightCensored) {
|
|
// Given label [60, +inf), compute the AFT loss for various prediction values
|
|
const double true_label_lower_bound = 60.0;
|
|
const double true_label_upper_bound = std::numeric_limits<double>::infinity();
|
|
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kNormal,
|
|
{ 8.0000, 6.2537, 4.7487, 3.4798, 2.4396, 1.6177, 0.9993, 0.5638, 0.2834, 0.1232, 0.0450,
|
|
0.0134, 0.0032, 0.0006, 0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kLogistic,
|
|
{ 3.4340, 2.9445, 2.4683, 2.0125, 1.5871, 1.2041, 0.8756, 0.6099, 0.4083, 0.2643, 0.1668,
|
|
0.1034, 0.0633, 0.0385, 0.0233, 0.0140, 0.0084, 0.0051, 0.0030, 0.0018 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kExtreme,
|
|
{ 27.6310, 18.0015, 10.8018, 6.4817, 3.8893, 2.3338, 1.4004, 0.8403, 0.5042, 0.3026, 0.1816,
|
|
0.1089, 0.0654, 0.0392, 0.0235, 0.0141, 0.0085, 0.0051, 0.0031, 0.0018 });
|
|
}
|
|
|
|
TEST(AFTLoss, IntervalCensored) {
|
|
// Given label [16, 200], compute the AFT loss for various prediction values
|
|
const double true_label_lower_bound = 16.0;
|
|
const double true_label_upper_bound = 200.0;
|
|
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kNormal,
|
|
{ 3.9746, 2.8415, 1.9319, 1.2342, 0.7335, 0.4121, 0.2536, 0.2470, 0.3919, 0.6982, 1.1825,
|
|
1.8622, 2.7526, 3.8656, 5.2102, 6.7928, 8.6183, 10.6901, 13.0108, 15.5826 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kLogistic,
|
|
{ 2.2906, 1.8578, 1.4667, 1.1324, 0.8692, 0.6882, 0.5948, 0.5909, 0.6764, 0.8499, 1.1061,
|
|
1.4348, 1.8215, 2.2511, 2.7104, 3.1891, 3.6802, 4.1790, 4.6825, 5.1888 });
|
|
CheckLossOverGridPoints(true_label_lower_bound, true_label_upper_bound,
|
|
ProbabilityDistributionType::kExtreme,
|
|
{ 8.0000, 4.8004, 2.8805, 1.7284, 1.0372, 0.6231, 0.3872, 0.3031, 0.3740, 0.5839, 0.8995,
|
|
1.2878, 1.7231, 2.1878, 2.6707, 3.1647, 3.6653, 4.1699, 4.6770, 5.1856 });
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|