549 lines
22 KiB
C++
549 lines
22 KiB
C++
#ifndef XGBOOST_TREE_UPDATER_COLMAKER_INL_HPP_
|
|
#define XGBOOST_TREE_UPDATER_COLMAKER_INL_HPP_
|
|
/*!
|
|
* \file updater_colmaker-inl.hpp
|
|
* \brief use columnwise update to construct a tree
|
|
* \author Tianqi Chen
|
|
*/
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include "./param.h"
|
|
#include "./updater.h"
|
|
#include "../utils/omp.h"
|
|
#include "../utils/random.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
/*! \brief pruner that prunes a tree after growing finishs */
|
|
template<typename TStats>
|
|
class ColMaker: public IUpdater {
|
|
public:
|
|
virtual ~ColMaker(void) {}
|
|
// set training parameter
|
|
virtual void SetParam(const char *name, const char *val) {
|
|
param.SetParam(name, val);
|
|
}
|
|
virtual void Update(const std::vector<bst_gpair> &gpair,
|
|
IFMatrix *p_fmat,
|
|
const BoosterInfo &info,
|
|
const std::vector<RegTree*> &trees) {
|
|
TStats::CheckInfo(info);
|
|
// rescale learning rate according to size of trees
|
|
float lr = param.learning_rate;
|
|
param.learning_rate = lr / trees.size();
|
|
// build tree
|
|
for (size_t i = 0; i < trees.size(); ++i) {
|
|
Builder builder(param);
|
|
builder.Update(gpair, p_fmat, info, trees[i]);
|
|
}
|
|
param.learning_rate = lr;
|
|
}
|
|
|
|
private:
|
|
// training parameter
|
|
TrainParam param;
|
|
// data structure
|
|
/*! \brief per thread x per node entry to store tmp data */
|
|
struct ThreadEntry {
|
|
/*! \brief statistics of data */
|
|
TStats stats;
|
|
/*! \brief extra statistics of data */
|
|
TStats stats_extra;
|
|
/*! \brief last feature value scanned */
|
|
float last_fvalue;
|
|
/*! \brief first feature value scanned */
|
|
float first_fvalue;
|
|
/*! \brief current best solution */
|
|
SplitEntry best;
|
|
// constructor
|
|
explicit ThreadEntry(const TrainParam ¶m)
|
|
: stats(param), stats_extra(param) {
|
|
}
|
|
};
|
|
struct NodeEntry {
|
|
/*! \brief statics for node entry */
|
|
TStats stats;
|
|
/*! \brief loss of this node, without split */
|
|
bst_float root_gain;
|
|
/*! \brief weight calculated related to current data */
|
|
float weight;
|
|
/*! \brief current best solution */
|
|
SplitEntry best;
|
|
// constructor
|
|
explicit NodeEntry(const TrainParam ¶m)
|
|
: stats(param), root_gain(0.0f), weight(0.0f){
|
|
}
|
|
};
|
|
// actual builder that runs the algorithm
|
|
struct Builder{
|
|
public:
|
|
// constructor
|
|
explicit Builder(const TrainParam ¶m) : param(param) {}
|
|
// update one tree, growing
|
|
virtual void Update(const std::vector<bst_gpair> &gpair,
|
|
IFMatrix *p_fmat,
|
|
const BoosterInfo &info,
|
|
RegTree *p_tree) {
|
|
this->InitData(gpair, *p_fmat, info.root_index, *p_tree);
|
|
this->InitNewNode(qexpand, gpair, *p_fmat, info, *p_tree);
|
|
for (int depth = 0; depth < param.max_depth; ++depth) {
|
|
this->FindSplit(depth, this->qexpand, gpair, p_fmat, info, p_tree);
|
|
this->ResetPosition(this->qexpand, p_fmat, *p_tree);
|
|
this->UpdateQueueExpand(*p_tree, &this->qexpand);
|
|
this->InitNewNode(qexpand, gpair, *p_fmat, info, *p_tree);
|
|
// if nothing left to be expand, break
|
|
if (qexpand.size() == 0) break;
|
|
}
|
|
// set all the rest expanding nodes to leaf
|
|
for (size_t i = 0; i < qexpand.size(); ++i) {
|
|
const int nid = qexpand[i];
|
|
(*p_tree)[nid].set_leaf(snode[nid].weight * param.learning_rate);
|
|
}
|
|
// remember auxiliary statistics in the tree node
|
|
for (int nid = 0; nid < p_tree->param.num_nodes; ++nid) {
|
|
p_tree->stat(nid).loss_chg = snode[nid].best.loss_chg;
|
|
p_tree->stat(nid).base_weight = snode[nid].weight;
|
|
p_tree->stat(nid).sum_hess = static_cast<float>(snode[nid].stats.sum_hess);
|
|
snode[nid].stats.SetLeafVec(param, p_tree->leafvec(nid));
|
|
}
|
|
}
|
|
|
|
private:
|
|
// initialize temp data structure
|
|
inline void InitData(const std::vector<bst_gpair> &gpair,
|
|
const IFMatrix &fmat,
|
|
const std::vector<unsigned> &root_index, const RegTree &tree) {
|
|
utils::Assert(tree.param.num_nodes == tree.param.num_roots, "ColMaker: can only grow new tree");
|
|
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
|
|
{// setup position
|
|
position.resize(gpair.size());
|
|
if (root_index.size() == 0) {
|
|
for (size_t i = 0; i < rowset.size(); ++i) {
|
|
position[rowset[i]] = 0;
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < rowset.size(); ++i) {
|
|
const bst_uint ridx = rowset[i];
|
|
position[ridx] = root_index[ridx];
|
|
utils::Assert(root_index[ridx] < (unsigned)tree.param.num_roots, "root index exceed setting");
|
|
}
|
|
}
|
|
// mark delete for the deleted datas
|
|
for (size_t i = 0; i < rowset.size(); ++i) {
|
|
const bst_uint ridx = rowset[i];
|
|
if (gpair[ridx].hess < 0.0f) position[ridx] = -1;
|
|
}
|
|
// mark subsample
|
|
if (param.subsample < 1.0f) {
|
|
for (size_t i = 0; i < rowset.size(); ++i) {
|
|
const bst_uint ridx = rowset[i];
|
|
if (gpair[ridx].hess < 0.0f) continue;
|
|
if (random::SampleBinary(param.subsample) == 0) position[ridx] = -1;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// initialize feature index
|
|
unsigned ncol = static_cast<unsigned>(fmat.NumCol());
|
|
for (unsigned i = 0; i < ncol; ++i) {
|
|
if (fmat.GetColSize(i) != 0) {
|
|
feat_index.push_back(i);
|
|
}
|
|
}
|
|
unsigned n = static_cast<unsigned>(param.colsample_bytree * feat_index.size());
|
|
random::Shuffle(feat_index);
|
|
utils::Check(n > 0, "colsample_bytree is too small that no feature can be included");
|
|
feat_index.resize(n);
|
|
}
|
|
{// setup temp space for each thread
|
|
#pragma omp parallel
|
|
{
|
|
this->nthread = omp_get_num_threads();
|
|
}
|
|
// reserve a small space
|
|
stemp.clear();
|
|
stemp.resize(this->nthread, std::vector<ThreadEntry>());
|
|
for (size_t i = 0; i < stemp.size(); ++i) {
|
|
stemp[i].clear(); stemp[i].reserve(256);
|
|
}
|
|
snode.reserve(256);
|
|
}
|
|
{// expand query
|
|
qexpand.reserve(256); qexpand.clear();
|
|
for (int i = 0; i < tree.param.num_roots; ++i) {
|
|
qexpand.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
/*! \brief initialize the base_weight, root_gain, and NodeEntry for all the new nodes in qexpand */
|
|
inline void InitNewNode(const std::vector<int> &qexpand,
|
|
const std::vector<bst_gpair> &gpair,
|
|
const IFMatrix &fmat,
|
|
const BoosterInfo &info,
|
|
const RegTree &tree) {
|
|
{// setup statistics space for each tree node
|
|
for (size_t i = 0; i < stemp.size(); ++i) {
|
|
stemp[i].resize(tree.param.num_nodes, ThreadEntry(param));
|
|
}
|
|
snode.resize(tree.param.num_nodes, NodeEntry(param));
|
|
}
|
|
const std::vector<bst_uint> &rowset = fmat.buffered_rowset();
|
|
// setup position
|
|
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
const bst_uint ridx = rowset[i];
|
|
const int tid = omp_get_thread_num();
|
|
if (position[ridx] < 0) continue;
|
|
stemp[tid][position[ridx]].stats.Add(gpair, info, ridx);
|
|
}
|
|
// sum the per thread statistics together
|
|
for (size_t j = 0; j < qexpand.size(); ++j) {
|
|
const int nid = qexpand[j];
|
|
TStats stats(param);
|
|
for (size_t tid = 0; tid < stemp.size(); ++tid) {
|
|
stats.Add(stemp[tid][nid].stats);
|
|
}
|
|
// update node statistics
|
|
snode[nid].stats = stats;
|
|
snode[nid].root_gain = static_cast<float>(stats.CalcGain(param));
|
|
snode[nid].weight = static_cast<float>(stats.CalcWeight(param));
|
|
}
|
|
}
|
|
/*! \brief update queue expand add in new leaves */
|
|
inline void UpdateQueueExpand(const RegTree &tree, std::vector<int> *p_qexpand) {
|
|
std::vector<int> &qexpand = *p_qexpand;
|
|
std::vector<int> newnodes;
|
|
for (size_t i = 0; i < qexpand.size(); ++i) {
|
|
const int nid = qexpand[i];
|
|
if (!tree[ nid ].is_leaf()) {
|
|
newnodes.push_back(tree[nid].cleft());
|
|
newnodes.push_back(tree[nid].cright());
|
|
}
|
|
}
|
|
// use new nodes for qexpand
|
|
qexpand = newnodes;
|
|
}
|
|
// parallel find the best split of current fid
|
|
// this function does not support nested functions
|
|
inline void ParallelFindSplit(const ColBatch::Inst &col,
|
|
bst_uint fid,
|
|
const IFMatrix &fmat,
|
|
const std::vector<bst_gpair> &gpair,
|
|
const BoosterInfo &info) {
|
|
bool need_forward = param.need_forward_search(fmat.GetColDensity(fid));
|
|
bool need_backward = param.need_backward_search(fmat.GetColDensity(fid));
|
|
int nthread;
|
|
#pragma omp parallel
|
|
{
|
|
const int tid = omp_get_thread_num();
|
|
std::vector<ThreadEntry> &temp = stemp[tid];
|
|
// cleanup temp statistics
|
|
for (size_t j = 0; j < qexpand.size(); ++j) {
|
|
temp[qexpand[j]].stats.Clear();
|
|
}
|
|
nthread = omp_get_num_threads();
|
|
bst_uint step = (col.length + nthread - 1) / nthread;
|
|
bst_uint end = std::min(col.length, step * (tid + 1));
|
|
for (bst_uint i = tid * step; i < end; ++i) {
|
|
const bst_uint ridx = col[i].index;
|
|
const int nid = position[ridx];
|
|
if (nid < 0) continue;
|
|
const float fvalue = col[i].fvalue;
|
|
if (temp[nid].stats.Empty()) {
|
|
temp[nid].first_fvalue = fvalue;
|
|
}
|
|
temp[nid].stats.Add(gpair, info, ridx);
|
|
temp[nid].last_fvalue = fvalue;
|
|
}
|
|
}
|
|
// start collecting the partial sum statistics
|
|
bst_omp_uint nnode = static_cast<bst_omp_uint>(qexpand.size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint j = 0; j < nnode; ++j) {
|
|
const int nid = qexpand[j];
|
|
TStats sum(param), tmp(param), c(param);
|
|
for (int tid = 0; tid < nthread; ++tid) {
|
|
tmp = stemp[tid][nid].stats;
|
|
stemp[tid][nid].stats = sum;
|
|
sum.Add(tmp);
|
|
if (tid != 0) {
|
|
std::swap(stemp[tid - 1][nid].last_fvalue, stemp[tid][nid].first_fvalue);
|
|
}
|
|
}
|
|
for (int tid = 0; tid < nthread; ++tid) {
|
|
stemp[tid][nid].stats_extra = sum;
|
|
ThreadEntry &e = stemp[tid][nid];
|
|
float fsplit;
|
|
if (tid != 0) {
|
|
if(fabsf(stemp[tid - 1][nid].last_fvalue - e.first_fvalue) > rt_2eps) {
|
|
fsplit = (stemp[tid - 1][nid].last_fvalue - e.first_fvalue) * 0.5f;
|
|
} else {
|
|
continue;
|
|
}
|
|
} else {
|
|
fsplit = e.first_fvalue - rt_eps;
|
|
}
|
|
if (need_forward && tid != 0) {
|
|
c.SetSubstract(snode[nid].stats, e.stats);
|
|
if (c.sum_hess >= param.min_child_weight && e.stats.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, fsplit, false);
|
|
}
|
|
}
|
|
if (need_backward) {
|
|
tmp.SetSubstract(sum, e.stats);
|
|
c.SetSubstract(snode[nid].stats, tmp);
|
|
if (c.sum_hess >= param.min_child_weight && tmp.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(tmp.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, fsplit, true);
|
|
}
|
|
}
|
|
}
|
|
if (need_backward) {
|
|
tmp = sum;
|
|
ThreadEntry &e = stemp[nthread-1][nid];
|
|
c.SetSubstract(snode[nid].stats, tmp);
|
|
if (c.sum_hess >= param.min_child_weight && tmp.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(tmp.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, e.last_fvalue + rt_eps, true);
|
|
}
|
|
}
|
|
}
|
|
// rescan, generate candidate split
|
|
#pragma omp parallel
|
|
{
|
|
TStats c(param), cright(param);
|
|
const int tid = omp_get_thread_num();
|
|
std::vector<ThreadEntry> &temp = stemp[tid];
|
|
nthread = static_cast<bst_uint>(omp_get_num_threads());
|
|
bst_uint step = (col.length + nthread - 1) / nthread;
|
|
bst_uint end = std::min(col.length, step * (tid + 1));
|
|
for (bst_uint i = tid * step; i < end; ++i) {
|
|
const bst_uint ridx = col[i].index;
|
|
const int nid = position[ridx];
|
|
if (nid < 0) continue;
|
|
const float fvalue = col[i].fvalue;
|
|
// get the statistics of nid
|
|
ThreadEntry &e = temp[nid];
|
|
if (e.stats.Empty()) {
|
|
e.stats.Add(gpair, info, ridx);
|
|
e.first_fvalue = fvalue;
|
|
} else {
|
|
// forward default right
|
|
if (fabsf(fvalue - e.first_fvalue) > rt_2eps){
|
|
if (need_forward) {
|
|
c.SetSubstract(snode[nid].stats, e.stats);
|
|
if (c.sum_hess >= param.min_child_weight && e.stats.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, (fvalue + e.first_fvalue) * 0.5f, false);
|
|
}
|
|
}
|
|
if (need_backward) {
|
|
cright.SetSubstract(e.stats_extra, e.stats);
|
|
c.SetSubstract(snode[nid].stats, cright);
|
|
if (c.sum_hess >= param.min_child_weight && cright.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(cright.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, (fvalue + e.first_fvalue) * 0.5f, true);
|
|
}
|
|
}
|
|
}
|
|
e.stats.Add(gpair, info, ridx);
|
|
e.first_fvalue = fvalue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// enumerate the split values of specific feature
|
|
inline void EnumerateSplit(const ColBatch::Entry *begin,
|
|
const ColBatch::Entry *end,
|
|
int d_step,
|
|
bst_uint fid,
|
|
const std::vector<bst_gpair> &gpair,
|
|
const BoosterInfo &info,
|
|
std::vector<ThreadEntry> &temp) {
|
|
// clear all the temp statistics
|
|
for (size_t j = 0; j < qexpand.size(); ++j) {
|
|
temp[qexpand[j]].stats.Clear();
|
|
}
|
|
// left statistics
|
|
TStats c(param);
|
|
for(const ColBatch::Entry *it = begin; it != end; it += d_step) {
|
|
const bst_uint ridx = it->index;
|
|
const int nid = position[ridx];
|
|
if (nid < 0) continue;
|
|
// start working
|
|
const float fvalue = it->fvalue;
|
|
// get the statistics of nid
|
|
ThreadEntry &e = temp[nid];
|
|
// test if first hit, this is fine, because we set 0 during init
|
|
if (e.stats.Empty()) {
|
|
e.stats.Add(gpair, info, ridx);
|
|
e.last_fvalue = fvalue;
|
|
} else {
|
|
// try to find a split
|
|
if (fabsf(fvalue - e.last_fvalue) > rt_2eps && e.stats.sum_hess >= param.min_child_weight) {
|
|
c.SetSubstract(snode[nid].stats, e.stats);
|
|
if (c.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
e.best.Update(loss_chg, fid, (fvalue + e.last_fvalue) * 0.5f, d_step == -1);
|
|
}
|
|
}
|
|
// update the statistics
|
|
e.stats.Add(gpair, info, ridx);
|
|
e.last_fvalue = fvalue;
|
|
}
|
|
}
|
|
// finish updating all statistics, check if it is possible to include all sum statistics
|
|
for (size_t i = 0; i < qexpand.size(); ++i) {
|
|
const int nid = qexpand[i];
|
|
ThreadEntry &e = temp[nid];
|
|
c.SetSubstract(snode[nid].stats, e.stats);
|
|
if (e.stats.sum_hess >= param.min_child_weight && c.sum_hess >= param.min_child_weight) {
|
|
bst_float loss_chg = static_cast<bst_float>(e.stats.CalcGain(param) + c.CalcGain(param) - snode[nid].root_gain);
|
|
const float delta = d_step == +1 ? rt_eps : -rt_eps;
|
|
e.best.Update(loss_chg, fid, e.last_fvalue + delta, d_step == -1);
|
|
}
|
|
}
|
|
}
|
|
// update the solution candidate
|
|
virtual void UpdateSolution(const ColBatch &batch,
|
|
const std::vector<bst_gpair> &gpair,
|
|
const IFMatrix &fmat,
|
|
const BoosterInfo &info) {
|
|
// start enumeration
|
|
const bst_omp_uint nsize = static_cast<bst_omp_uint>(batch.size);
|
|
#if defined(_OPENMP)
|
|
const int batch_size = std::max(static_cast<int>(nsize / this->nthread / 32), 1);
|
|
#endif
|
|
if (param.parallel_option == 0) {
|
|
#pragma omp parallel for schedule(dynamic, batch_size)
|
|
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
|
const bst_uint fid = batch.col_index[i];
|
|
const int tid = omp_get_thread_num();
|
|
const ColBatch::Inst c = batch[i];
|
|
if (param.need_forward_search(fmat.GetColDensity(fid))) {
|
|
this->EnumerateSplit(c.data, c.data + c.length, +1,
|
|
fid, gpair, info, stemp[tid]);
|
|
}
|
|
if (param.need_backward_search(fmat.GetColDensity(fid))) {
|
|
this->EnumerateSplit(c.data + c.length - 1, c.data - 1, -1,
|
|
fid, gpair, info, stemp[tid]);
|
|
}
|
|
}
|
|
} else {
|
|
for (bst_omp_uint i = 0; i < nsize; ++i) {
|
|
this->ParallelFindSplit(batch[i], batch.col_index[i],
|
|
fmat, gpair, info);
|
|
}
|
|
}
|
|
}
|
|
// find splits at current level, do split per level
|
|
inline void FindSplit(int depth,
|
|
const std::vector<int> &qexpand,
|
|
const std::vector<bst_gpair> &gpair,
|
|
IFMatrix *p_fmat,
|
|
const BoosterInfo &info,
|
|
RegTree *p_tree) {
|
|
std::vector<bst_uint> feat_set = feat_index;
|
|
if (param.colsample_bylevel != 1.0f) {
|
|
random::Shuffle(feat_set);
|
|
unsigned n = static_cast<unsigned>(param.colsample_bylevel * feat_index.size());
|
|
utils::Check(n > 0, "colsample_bylevel is too small that no feature can be included");
|
|
feat_set.resize(n);
|
|
}
|
|
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(feat_set);
|
|
while (iter->Next()) {
|
|
this->UpdateSolution(iter->Value(), gpair, *p_fmat, info);
|
|
}
|
|
// after this each thread's stemp will get the best candidates, aggregate results
|
|
for (size_t i = 0; i < qexpand.size(); ++i) {
|
|
const int nid = qexpand[i];
|
|
NodeEntry &e = snode[nid];
|
|
for (int tid = 0; tid < this->nthread; ++tid) {
|
|
e.best.Update(stemp[tid][nid].best);
|
|
}
|
|
// now we know the solution in snode[nid], set split
|
|
if (e.best.loss_chg > rt_eps) {
|
|
p_tree->AddChilds(nid);
|
|
(*p_tree)[nid].set_split(e.best.split_index(), e.best.split_value, e.best.default_left());
|
|
} else {
|
|
(*p_tree)[nid].set_leaf(e.weight * param.learning_rate);
|
|
}
|
|
}
|
|
}
|
|
|
|
// reset position of each data points after split is created in the tree
|
|
inline void ResetPosition(const std::vector<int> &qexpand, IFMatrix *p_fmat, const RegTree &tree) {
|
|
const std::vector<bst_uint> &rowset = p_fmat->buffered_rowset();
|
|
// step 1, set default direct nodes to default, and leaf nodes to -1
|
|
const bst_omp_uint ndata = static_cast<bst_omp_uint>(rowset.size());
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
|
const bst_uint ridx = rowset[i];
|
|
const int nid = position[ridx];
|
|
if (nid >= 0) {
|
|
if (tree[nid].is_leaf()) {
|
|
position[ridx] = -1;
|
|
} else {
|
|
// push to default branch, correct latter
|
|
position[ridx] = tree[nid].default_left() ? tree[nid].cleft(): tree[nid].cright();
|
|
}
|
|
}
|
|
}
|
|
// step 2, classify the non-default data into right places
|
|
std::vector<unsigned> fsplits;
|
|
for (size_t i = 0; i < qexpand.size(); ++i) {
|
|
const int nid = qexpand[i];
|
|
if (!tree[nid].is_leaf()) fsplits.push_back(tree[nid].split_index());
|
|
}
|
|
std::sort(fsplits.begin(), fsplits.end());
|
|
fsplits.resize(std::unique(fsplits.begin(), fsplits.end()) - fsplits.begin());
|
|
|
|
utils::IIterator<ColBatch> *iter = p_fmat->ColIterator(fsplits);
|
|
while (iter->Next()) {
|
|
const ColBatch &batch = iter->Value();
|
|
for (size_t i = 0; i < batch.size; ++i) {
|
|
ColBatch::Inst col = batch[i];
|
|
const bst_uint fid = batch.col_index[i];
|
|
const bst_omp_uint ndata = static_cast<bst_omp_uint>(col.length);
|
|
#pragma omp parallel for schedule(static)
|
|
for (bst_omp_uint j = 0; j < ndata; ++j) {
|
|
const bst_uint ridx = col[j].index;
|
|
const float fvalue = col[j].fvalue;
|
|
int nid = position[ridx];
|
|
if (nid == -1) continue;
|
|
// go back to parent, correct those who are not default
|
|
nid = tree[nid].parent();
|
|
if (tree[nid].split_index() == fid) {
|
|
if (fvalue < tree[nid].split_cond()) {
|
|
position[ridx] = tree[nid].cleft();
|
|
} else {
|
|
position[ridx] = tree[nid].cright();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
//--data fields--
|
|
const TrainParam ¶m;
|
|
// number of omp thread used during training
|
|
int nthread;
|
|
// Per feature: shuffle index of each feature index
|
|
std::vector<bst_uint> feat_index;
|
|
// Instance Data: current node position in the tree of each instance
|
|
std::vector<int> position;
|
|
// PerThread x PerTreeNode: statistics for per thread construction
|
|
std::vector< std::vector<ThreadEntry> > stemp;
|
|
/*! \brief TreeNode Data: statistics for each constructed node */
|
|
std::vector<NodeEntry> snode;
|
|
/*! \brief queue of nodes to be expanded */
|
|
std::vector<int> qexpand;
|
|
};
|
|
};
|
|
|
|
} // namespace tree
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_TREE_UPDATER_COLMAKER_INL_HPP_
|