xgboost/tests/cpp/tree/test_tree_stat.cc
2023-10-12 16:16:44 -07:00

210 lines
6.6 KiB
C++

/**
* Copyright 2020-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h> // for Context
#include <xgboost/task.h> // for ObjInfo
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>
#include <memory> // for unique_ptr
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
namespace xgboost {
class UpdaterTreeStatTest : public ::testing::Test {
protected:
std::shared_ptr<DMatrix> p_dmat_;
linalg::Matrix<GradientPair> gpairs_;
size_t constexpr static kRows = 10;
size_t constexpr static kCols = 10;
protected:
void SetUp() override {
p_dmat_ = RandomDataGenerator(kRows, kCols, .5f).GenerateDMatrix(true);
auto g = GenerateRandomGradients(kRows);
gpairs_.Reshape(kRows, 1);
gpairs_.Data()->Copy(g);
}
void RunTest(std::string updater) {
tree::TrainParam param;
ObjInfo task{ObjInfo::kRegression};
param.Init(Args{});
Context ctx(updater == "grow_gpu_hist" ? MakeCUDACtx(0) : MakeCUDACtx(Context::kCpuId));
auto up = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, &ctx, &task)};
up->Configure(Args{});
RegTree tree{1u, kCols};
std::vector<HostDeviceVector<bst_node_t>> position(1);
up->Update(&param, &gpairs_, p_dmat_.get(), position, {&tree});
tree.WalkTree([&tree](bst_node_t nidx) {
if (tree[nidx].IsLeaf()) {
// 1.0 is the default `min_child_weight`.
CHECK_GE(tree.Stat(nidx).sum_hess, 1.0);
}
return true;
});
}
};
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST_F(UpdaterTreeStatTest, GpuHist) { this->RunTest("grow_gpu_hist"); }
#endif // defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST_F(UpdaterTreeStatTest, Hist) { this->RunTest("grow_quantile_histmaker"); }
TEST_F(UpdaterTreeStatTest, Exact) { this->RunTest("grow_colmaker"); }
TEST_F(UpdaterTreeStatTest, Approx) { this->RunTest("grow_histmaker"); }
class UpdaterEtaTest : public ::testing::Test {
protected:
std::shared_ptr<DMatrix> p_dmat_;
linalg::Matrix<GradientPair> gpairs_;
size_t constexpr static kRows = 10;
size_t constexpr static kCols = 10;
size_t constexpr static kClasses = 10;
void SetUp() override {
p_dmat_ = RandomDataGenerator(kRows, kCols, .5f).GenerateDMatrix(true, false, kClasses);
auto g = GenerateRandomGradients(kRows);
gpairs_.Reshape(kRows, 1);
gpairs_.Data()->Copy(g);
}
void RunTest(std::string updater) {
ObjInfo task{ObjInfo::kClassification};
Context ctx(updater == "grow_gpu_hist" ? MakeCUDACtx(0) : MakeCUDACtx(Context::kCpuId));
float eta = 0.4;
auto up_0 = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, &ctx, &task)};
up_0->Configure(Args{});
tree::TrainParam param0;
param0.Init(Args{{"eta", std::to_string(eta)}});
auto up_1 = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, &ctx, &task)};
up_1->Configure(Args{{"eta", "1.0"}});
tree::TrainParam param1;
param1.Init(Args{{"eta", "1.0"}});
for (size_t iter = 0; iter < 4; ++iter) {
RegTree tree_0{1u, kCols};
{
std::vector<HostDeviceVector<bst_node_t>> position(1);
up_0->Update(&param0, &gpairs_, p_dmat_.get(), position, {&tree_0});
}
RegTree tree_1{1u, kCols};
{
std::vector<HostDeviceVector<bst_node_t>> position(1);
up_1->Update(&param1, &gpairs_, p_dmat_.get(), position, {&tree_1});
}
tree_0.WalkTree([&](bst_node_t nidx) {
if (tree_0[nidx].IsLeaf()) {
EXPECT_NEAR(tree_1[nidx].LeafValue() * eta, tree_0[nidx].LeafValue(), kRtEps);
}
return true;
});
}
}
};
TEST_F(UpdaterEtaTest, Hist) { this->RunTest("grow_quantile_histmaker"); }
TEST_F(UpdaterEtaTest, Exact) { this->RunTest("grow_colmaker"); }
TEST_F(UpdaterEtaTest, Approx) { this->RunTest("grow_histmaker"); }
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST_F(UpdaterEtaTest, GpuHist) { this->RunTest("grow_gpu_hist"); }
#endif // defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
class TestMinSplitLoss : public ::testing::Test {
std::shared_ptr<DMatrix> dmat_;
linalg::Matrix<GradientPair> gpair_;
void SetUp() override {
constexpr size_t kRows = 32;
constexpr size_t kCols = 16;
constexpr float kSparsity = 0.6;
dmat_ = RandomDataGenerator(kRows, kCols, kSparsity).Seed(3).GenerateDMatrix();
gpair_.Reshape(kRows, 1);
gpair_.Data()->Copy(GenerateRandomGradients(kRows));
}
std::int32_t Update(Context const* ctx, std::string updater, float gamma) {
Args args{{"max_depth", "1"},
{"max_leaves", "0"},
// Disable all other parameters.
{"colsample_bynode", "1"},
{"colsample_bylevel", "1"},
{"colsample_bytree", "1"},
{"min_child_weight", "0.01"},
{"reg_alpha", "0"},
{"reg_lambda", "0"},
{"max_delta_step", "0"},
// test gamma
{"gamma", std::to_string(gamma)}};
tree::TrainParam param;
param.UpdateAllowUnknown(args);
ObjInfo task{ObjInfo::kRegression};
auto up = std::unique_ptr<TreeUpdater>{TreeUpdater::Create(updater, ctx, &task)};
up->Configure({});
RegTree tree;
std::vector<HostDeviceVector<bst_node_t>> position(1);
up->Update(&param, &gpair_, dmat_.get(), position, {&tree});
auto n_nodes = tree.NumExtraNodes();
return n_nodes;
}
public:
void RunTest(Context const* ctx, std::string updater) {
{
int32_t n_nodes = Update(ctx, updater, 0.01);
// This is not strictly verified, meaning the numeber `2` is whatever GPU_Hist retured
// when writing this test, and only used for testing larger gamma (below) does prevent
// building tree.
ASSERT_EQ(n_nodes, 2);
}
{
int32_t n_nodes = Update(ctx, updater, 100.0);
// No new nodes with gamma == 100.
ASSERT_EQ(n_nodes, static_cast<decltype(n_nodes)>(0));
}
}
};
/* Exact tree method requires a pruner as an additional updater, so not tested here. */
TEST_F(TestMinSplitLoss, Approx) {
Context ctx;
this->RunTest(&ctx, "grow_histmaker");
}
TEST_F(TestMinSplitLoss, Hist) {
Context ctx;
this->RunTest(&ctx, "grow_quantile_histmaker");
}
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
TEST_F(TestMinSplitLoss, GpuHist) {
auto ctx = MakeCUDACtx(0);
this->RunTest(&ctx, "grow_gpu_hist");
}
TEST_F(TestMinSplitLoss, GpuApprox) {
auto ctx = MakeCUDACtx(0);
this->RunTest(&ctx, "grow_gpu_approx");
}
#endif // defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
} // namespace xgboost