xgboost/tests/cpp/gbm/test_gbtree.cc
Jiaming Yuan e8c5c53e2f
Use Predictor for dart. (#6693)
* Use normal predictor for dart booster.
* Implement `inplace_predict` for dart.
* Enable `dart` for dask interface now that it's thread-safe.
* categorical data should be working out of box for dart now.

The implementation is not very efficient as it has to pull back the data and
apply weight for each tree, but still a significant improvement over previous
implementation as now we no longer binary search for each sample.

* Fix output prediction shape on dataframe.
2021-02-09 23:30:19 +08:00

414 lines
14 KiB
C++

/*!
* Copyright 2019-2020 XGBoost contributors
*/
#include <gtest/gtest.h>
#include <dmlc/filesystem.h>
#include <xgboost/generic_parameters.h>
#include "xgboost/base.h"
#include "xgboost/host_device_vector.h"
#include "xgboost/learner.h"
#include "../helpers.h"
#include "../../../src/gbm/gbtree.h"
#include "../../../src/data/adapter.h"
#include "xgboost/predictor.h"
namespace xgboost {
TEST(GBTree, SelectTreeMethod) {
size_t constexpr kCols = 10;
GenericParameter generic_param;
generic_param.UpdateAllowUnknown(Args{});
LearnerModelParam mparam;
mparam.base_score = 0.5;
mparam.num_feature = kCols;
mparam.num_output_group = 1;
std::unique_ptr<GradientBooster> p_gbm {
GradientBooster::Create("gbtree", &generic_param, &mparam)};
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
// Test if `tree_method` can be set
Args args {{"tree_method", "approx"}};
gbtree.Configure({args.cbegin(), args.cend()});
gbtree.Configure(args);
auto const& tparam = gbtree.GetTrainParam();
gbtree.Configure({{"tree_method", "approx"}});
ASSERT_EQ(tparam.updater_seq, "grow_histmaker,prune");
gbtree.Configure({{"tree_method", "exact"}});
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
gbtree.Configure({{"tree_method", "hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
#ifdef XGBOOST_USE_CUDA
generic_param.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
gbtree.Configure({{"tree_method", "gpu_hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"}});
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
#endif // XGBOOST_USE_CUDA
}
TEST(GBTree, PredictionCache) {
size_t constexpr kRows = 100, kCols = 10;
GenericParameter generic_param;
generic_param.UpdateAllowUnknown(Args{});
LearnerModelParam mparam;
mparam.base_score = 0.5;
mparam.num_feature = kCols;
mparam.num_output_group = 1;
std::unique_ptr<GradientBooster> p_gbm {
GradientBooster::Create("gbtree", &generic_param, &mparam)};
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
gbtree.Configure({{"tree_method", "hist"}});
auto p_m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
auto gpair = GenerateRandomGradients(kRows);
PredictionCacheEntry out_predictions;
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions);
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(1, out_predictions.version);
std::vector<float> first_iter = out_predictions.predictions.HostVector();
// Add 1 more boosted round
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions);
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(2, out_predictions.version);
// Update the cache for all rounds
out_predictions.version = 0;
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 0);
ASSERT_EQ(2, out_predictions.version);
gbtree.DoBoost(p_m.get(), &gpair, &out_predictions);
// drop the cache.
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 2);
ASSERT_EQ(0, out_predictions.version);
// half open set [1, 3)
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 1, 3);
ASSERT_EQ(0, out_predictions.version);
// iteration end
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 2);
ASSERT_EQ(2, out_predictions.version);
// restart the cache when end iteration is smaller than cache version
gbtree.PredictBatch(p_m.get(), &out_predictions, false, 0, 1);
ASSERT_EQ(1, out_predictions.version);
ASSERT_EQ(out_predictions.predictions.HostVector(), first_iter);
}
TEST(GBTree, WrongUpdater) {
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
p_dmat->Info().labels_.Resize(kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
// Hist can not be used for updating tree.
learner->SetParams(Args{{"tree_method", "hist"}, {"process_type", "update"}});
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
// Prune can not be used for learning new tree.
learner->SetParams(
Args{{"tree_method", "prune"}, {"process_type", "default"}});
ASSERT_THROW(learner->UpdateOneIter(0, p_dmat), dmlc::Error);
}
#ifdef XGBOOST_USE_CUDA
TEST(GBTree, ChoosePredictor) {
// The test ensures data don't get pulled into device.
size_t constexpr kRows = 17;
size_t constexpr kCols = 15;
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
auto& data = (*(p_dmat->GetBatches<SparsePage>().begin())).data;
p_dmat->Info().labels_.Resize(kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
ASSERT_TRUE(data.HostCanWrite());
dmlc::TemporaryDirectory tempdir;
const std::string fname = tempdir.path + "/model_param.bst";
{
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
learner->Save(fo.get());
}
// a new learner
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
{
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
learner->Load(fi.get());
}
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
ASSERT_TRUE(data.HostCanWrite());
// pull data into device.
data = HostDeviceVector<Entry>(data.HostVector(), 0);
data.DeviceSpan();
ASSERT_FALSE(data.HostCanWrite());
// another new learner
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
for (size_t i = 0; i < 4; ++i) {
learner->UpdateOneIter(i, p_dmat);
}
// data is not pulled back into host
ASSERT_FALSE(data.HostCanWrite());
}
#endif // XGBOOST_USE_CUDA
// Some other parts of test are in `Tree.JsonIO'.
TEST(GBTree, JsonIO) {
size_t constexpr kRows = 16, kCols = 16;
LearnerModelParam mparam;
mparam.num_feature = kCols;
mparam.num_output_group = 1;
mparam.base_score = 0.5;
GenericParameter gparam;
gparam.Init(Args{});
std::unique_ptr<GradientBooster> gbm {
CreateTrainedGBM("gbtree", Args{}, kRows, kCols, &mparam, &gparam) };
Json model {Object()};
model["model"] = Object();
auto& j_model = model["model"];
model["config"] = Object();
auto& j_param = model["config"];
gbm->SaveModel(&j_model);
gbm->SaveConfig(&j_param);
std::string model_str;
Json::Dump(model, &model_str);
model = Json::Load({model_str.c_str(), model_str.size()});
ASSERT_EQ(get<String>(model["model"]["name"]), "gbtree");
auto const& gbtree_model = model["model"]["model"];
ASSERT_EQ(get<Array>(gbtree_model["trees"]).size(), 1ul);
ASSERT_EQ(get<Integer>(get<Object>(get<Array>(gbtree_model["trees"]).front()).at("id")), 0);
ASSERT_EQ(get<Array>(gbtree_model["tree_info"]).size(), 1ul);
auto j_train_param = model["config"]["gbtree_train_param"];
ASSERT_EQ(get<String>(j_train_param["num_parallel_tree"]), "1");
}
TEST(Dart, JsonIO) {
size_t constexpr kRows = 16, kCols = 16;
LearnerModelParam mparam;
mparam.num_feature = kCols;
mparam.base_score = 0.5;
mparam.num_output_group = 1;
GenericParameter gparam;
gparam.Init(Args{});
std::unique_ptr<GradientBooster> gbm {
CreateTrainedGBM("dart", Args{}, kRows, kCols, &mparam, &gparam) };
Json model {Object()};
model["model"] = Object();
auto& j_model = model["model"];
model["config"] = Object();
auto& j_param = model["config"];
gbm->SaveModel(&j_model);
gbm->SaveConfig(&j_param);
std::string model_str;
Json::Dump(model, &model_str);
model = Json::Load({model_str.c_str(), model_str.size()});
ASSERT_EQ(get<String>(model["model"]["name"]), "dart") << model;
ASSERT_EQ(get<String>(model["config"]["name"]), "dart");
ASSERT_TRUE(IsA<Object>(model["model"]["gbtree"]));
ASSERT_NE(get<Array>(model["model"]["weight_drop"]).size(), 0ul);
}
TEST(Dart, Prediction) {
size_t constexpr kRows = 16, kCols = 10;
HostDeviceVector<float> data;
auto array_str = RandomDataGenerator(kRows, kCols, 0).GenerateArrayInterface(&data);
auto p_mat = GetDMatrixFromData(data.HostVector(), kRows, kCols);
std::vector<bst_float> labels (kRows);
for (size_t i = 0; i < kRows; ++i) {
labels[i] = i % 2;
}
p_mat->Info().SetInfo("label", labels.data(), DataType::kFloat32, kRows);
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
learner->SetParam("booster", "dart");
learner->SetParam("rate_drop", "0.5");
learner->Configure();
for (size_t i = 0; i < 16; ++i) {
learner->UpdateOneIter(i, p_mat);
}
HostDeviceVector<float> predts_training;
learner->Predict(p_mat, false, &predts_training, 0, 0, true);
HostDeviceVector<float>* inplace_predts;
auto adapter = std::shared_ptr<data::ArrayAdapter>(new data::ArrayAdapter{StringView{array_str}});
learner->InplacePredict(adapter, nullptr, PredictionType::kValue,
std::numeric_limits<float>::quiet_NaN(),
&inplace_predts, 0, 0);
CHECK(inplace_predts);
HostDeviceVector<float> predts_inference;
learner->Predict(p_mat, false, &predts_inference, 0, 0, false);
auto const& h_predts_training = predts_training.ConstHostVector();
auto const& h_predts_inference = predts_inference.ConstHostVector();
auto const& h_inplace_predts = inplace_predts->HostVector();
ASSERT_EQ(h_predts_training.size(), h_predts_inference.size());
ASSERT_EQ(h_inplace_predts.size(), h_predts_inference.size());
for (size_t i = 0; i < predts_inference.Size(); ++i) {
// Inference doesn't drop tree.
ASSERT_GT(std::abs(h_predts_training[i] - h_predts_inference[i]), kRtEps * 10);
// Inplace prediction is inference.
ASSERT_LT(h_inplace_predts[i] - h_predts_inference[i], kRtEps / 10);
}
}
std::pair<Json, Json> TestModelSlice(std::string booster) {
size_t constexpr kRows = 1000, kCols = 100, kForest = 2, kClasses = 3;
auto m = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix(true, false, kClasses);
int32_t kIters = 10;
std::unique_ptr<Learner> learner {
Learner::Create({m})
};
learner->SetParams(Args{{"booster", booster},
{"tree_method", "hist"},
{"num_parallel_tree", std::to_string(kForest)},
{"num_class", std::to_string(kClasses)},
{"subsample", "0.5"},
{"max_depth", "2"}});
for (auto i = 0; i < kIters; ++i) {
learner->UpdateOneIter(i, m);
}
Json model{Object()};
Json config{Object()};
learner->SaveModel(&model);
learner->SaveConfig(&config);
bool out_of_bound = false;
size_t constexpr kSliceStart = 2, kSliceEnd = 8, kStep = 3;
std::unique_ptr<Learner> sliced {learner->Slice(kSliceStart, kSliceEnd, kStep, &out_of_bound)};
Json sliced_model{Object()};
sliced->SaveModel(&sliced_model);
auto get_shape = [&](Json const& model) {
if (booster == "gbtree") {
return get<Object const>(model["learner"]["gradient_booster"]["model"]["gbtree_model_param"]);
} else {
return get<Object const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["gbtree_model_param"]);
}
};
auto const& model_shape = get_shape(sliced_model);
CHECK_EQ(get<String const>(model_shape.at("num_trees")), std::to_string(2 * kClasses * kForest));
Json sliced_config {Object()};
sliced->SaveConfig(&sliced_config);
CHECK_EQ(sliced_config, config);
auto get_trees = [&](Json const& model) {
if (booster == "gbtree") {
return get<Array const>(model["learner"]["gradient_booster"]["model"]["trees"]);
} else {
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
}
};
auto get_info = [&](Json const& model) {
if (booster == "gbtree") {
return get<Array const>(model["learner"]["gradient_booster"]["model"]["tree_info"]);
} else {
return get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["tree_info"]);
}
};
auto const &sliced_trees = get_trees(sliced_model);
CHECK_EQ(sliced_trees.size(), 2 * kClasses * kForest);
auto constexpr kLayerSize = kClasses * kForest;
auto const &sliced_info = get_info(sliced_model);
for (size_t layer = 0; layer < 2; ++layer) {
for (size_t j = 0; j < kClasses; ++j) {
for (size_t k = 0; k < kForest; ++k) {
auto idx = layer * kLayerSize + j * kForest + k;
auto const &group = get<Integer const>(sliced_info.at(idx));
CHECK_EQ(static_cast<size_t>(group), j);
}
}
}
auto const& trees = get_trees(model);
// Sliced layers are [2, 5]
auto begin = kLayerSize * kSliceStart;
auto end = begin + kLayerSize;
auto j = 0;
for (size_t i = begin; i < end; ++i) {
Json tree = trees[i];
tree["id"] = Integer(0); // id is different, we set it to 0 to allow comparison.
auto sliced_tree = sliced_trees[j];
sliced_tree["id"] = Integer(0);
CHECK_EQ(tree, sliced_tree);
j++;
}
begin = kLayerSize * (kSliceStart + kStep);
end = begin + kLayerSize;
for (size_t i = begin; i < end; ++i) {
Json tree = trees[i];
tree["id"] = Integer(0);
auto sliced_tree = sliced_trees[j];
sliced_tree["id"] = Integer(0);
CHECK_EQ(tree, sliced_tree);
j++;
}
return std::make_pair(model, sliced_model);
}
TEST(GBTree, Slice) {
TestModelSlice("gbtree");
}
TEST(Dart, Slice) {
Json model, sliced_model;
std::tie(model, sliced_model) = TestModelSlice("dart");
auto const& weights = get<Array const>(model["learner"]["gradient_booster"]["weight_drop"]);
auto const& trees = get<Array const>(model["learner"]["gradient_booster"]["gbtree"]["model"]["trees"]);
ASSERT_EQ(weights.size(), trees.size());
}
} // namespace xgboost