xgboost/include/xgboost/learner.h
Jiaming Yuan e7ac2486eb
[backport] [R] Fix global feature importance and predict with 1 sample. (#7394) (#7397)
* [R] Fix global feature importance.

* Add implementation for tree index.  The parameter is not documented in C API since we
should work on porting the model slicing to R instead of supporting more use of tree
index.

* Fix the difference between "gain" and "total_gain".

* debug.

* Fix prediction.
2021-11-06 00:07:36 +08:00

322 lines
11 KiB
C++

/*!
* Copyright 2015-2021 by Contributors
* \file learner.h
* \brief Learner interface that integrates objective, gbm and evaluation together.
* This is the user facing XGBoost training module.
* \author Tianqi Chen
*/
#ifndef XGBOOST_LEARNER_H_
#define XGBOOST_LEARNER_H_
#include <dmlc/any.h>
#include <xgboost/base.h>
#include <xgboost/feature_map.h>
#include <xgboost/predictor.h>
#include <xgboost/generic_parameters.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/model.h>
#include <utility>
#include <map>
#include <memory>
#include <string>
#include <vector>
namespace xgboost {
class Metric;
class GradientBooster;
class ObjFunction;
class DMatrix;
class Json;
enum class PredictionType : std::uint8_t { // NOLINT
kValue = 0,
kMargin = 1,
kContribution = 2,
kApproxContribution = 3,
kInteraction = 4,
kApproxInteraction = 5,
kLeaf = 6
};
/*! \brief entry to to easily hold returning information */
struct XGBAPIThreadLocalEntry {
/*! \brief result holder for returning string */
std::string ret_str;
/*! \brief result holder for returning strings */
std::vector<std::string> ret_vec_str;
/*! \brief result holder for returning string pointers */
std::vector<const char *> ret_vec_charp;
/*! \brief returning float vector. */
std::vector<bst_float> ret_vec_float;
/*! \brief temp variable of gradient pairs. */
std::vector<GradientPair> tmp_gpair;
/*! \brief Temp variable for returning prediction result. */
PredictionCacheEntry prediction_entry;
/*! \brief Temp variable for returning prediction shape. */
std::vector<bst_ulong> prediction_shape;
};
/*!
* \brief Learner class that does training and prediction.
* This is the user facing module of xgboost training.
* The Load/Save function corresponds to the model used in python/R.
* \code
*
* std::unique_ptr<Learner> learner(new Learner::Create(cache_mats));
* learner.Configure(configs);
*
* for (int iter = 0; iter < max_iter; ++iter) {
* learner->UpdateOneIter(iter, train_mat);
* LOG(INFO) << learner->EvalOneIter(iter, data_sets, data_names);
* }
*
* \endcode
*/
class Learner : public Model, public Configurable, public dmlc::Serializable {
public:
/*! \brief virtual destructor */
~Learner() override;
/*!
* \brief Configure Learner based on set parameters.
*/
virtual void Configure() = 0;
/*!
* \brief update the model for one iteration
* With the specified objective function.
* \param iter current iteration number
* \param train reference to the data matrix.
*/
virtual void UpdateOneIter(int iter, std::shared_ptr<DMatrix> train) = 0;
/*!
* \brief Do customized gradient boosting with in_gpair.
* in_gair can be mutated after this call.
* \param iter current iteration number
* \param train reference to the data matrix.
* \param in_gpair The input gradient statistics.
*/
virtual void BoostOneIter(int iter,
std::shared_ptr<DMatrix> train,
HostDeviceVector<GradientPair>* in_gpair) = 0;
/*!
* \brief evaluate the model for specific iteration using the configured metrics.
* \param iter iteration number
* \param data_sets datasets to be evaluated.
* \param data_names name of each dataset
* \return a string corresponding to the evaluation result
*/
virtual std::string EvalOneIter(int iter,
const std::vector<std::shared_ptr<DMatrix>>& data_sets,
const std::vector<std::string>& data_names) = 0;
/*!
* \brief get prediction given the model.
* \param data input data
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector that stores the prediction
* \param layer_begin Beginning of boosted tree layer used for prediction.
* \param layer_end End of booster layer. 0 means do not limit trees.
* \param training Whether the prediction result is used for training
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
* \param pred_contribs whether to only predict the feature contributions
* \param approx_contribs whether to approximate the feature contributions for speed
* \param pred_interactions whether to compute the feature pair contributions
*/
virtual void Predict(std::shared_ptr<DMatrix> data,
bool output_margin,
HostDeviceVector<bst_float> *out_preds,
unsigned layer_begin,
unsigned layer_end,
bool training = false,
bool pred_leaf = false,
bool pred_contribs = false,
bool approx_contribs = false,
bool pred_interactions = false) = 0;
/*!
* \brief Inplace prediction.
*
* \param x A type erased data adapter.
* \param p_m An optional Proxy DMatrix object storing meta info like
* base margin. Can be nullptr.
* \param type Prediction type.
* \param missing Missing value in the data.
* \param [in,out] out_preds Pointer to output prediction vector.
* \param layer_begin Beginning of boosted tree layer used for prediction.
* \param layer_end End of booster layer. 0 means do not limit trees.
*/
virtual void InplacePredict(dmlc::any const &x,
std::shared_ptr<DMatrix> p_m,
PredictionType type,
float missing,
HostDeviceVector<bst_float> **out_preds,
uint32_t layer_begin, uint32_t layer_end) = 0;
/*!
* \brief Calculate feature score. See doc in C API for outputs.
*/
virtual void CalcFeatureScore(std::string const& importance_type,
common::Span<int32_t const> trees,
std::vector<bst_feature_t>* features,
std::vector<float>* scores) = 0;
/*
* \brief Get number of boosted rounds from gradient booster.
*/
virtual int32_t BoostedRounds() const = 0;
virtual uint32_t Groups() const = 0;
void LoadModel(Json const& in) override = 0;
void SaveModel(Json* out) const override = 0;
virtual void LoadModel(dmlc::Stream* fi) = 0;
virtual void SaveModel(dmlc::Stream* fo) const = 0;
/*!
* \brief Set multiple parameters at once.
*
* \param args parameters.
*/
virtual void SetParams(Args const& args) = 0;
/*!
* \brief Set parameter for booster
*
* The property will NOT be saved along with booster
*
* \param key The key of parameter
* \param value The value of parameter
*/
virtual void SetParam(const std::string& key, const std::string& value) = 0;
/*!
* \brief Get the number of features of the booster.
* \return number of features
*/
virtual uint32_t GetNumFeature() const = 0;
/*!
* \brief Set additional attribute to the Booster.
*
* The property will be saved along the booster.
*
* \param key The key of the property.
* \param value The value of the property.
*/
virtual void SetAttr(const std::string& key, const std::string& value) = 0;
/*!
* \brief Get attribute from the booster.
* The property will be saved along the booster.
* \param key The key of the attribute.
* \param out The output value.
* \return Whether the key exists among booster's attributes.
*/
virtual bool GetAttr(const std::string& key, std::string* out) const = 0;
/*!
* \brief Delete an attribute from the booster.
* \param key The key of the attribute.
* \return Whether the key was found among booster's attributes.
*/
virtual bool DelAttr(const std::string& key) = 0;
/*!
* \brief Get a vector of attribute names from the booster.
* \return vector of attribute name strings.
*/
virtual std::vector<std::string> GetAttrNames() const = 0;
/*!
* \brief Set the feature names for current booster.
* \param fn Input feature names
*/
virtual void SetFeatureNames(std::vector<std::string> const& fn) = 0;
/*!
* \brief Get the feature names for current booster.
* \param fn Output feature names
*/
virtual void GetFeatureNames(std::vector<std::string>* fn) const = 0;
/*!
* \brief Set the feature types for current booster.
* \param ft Input feature types.
*/
virtual void SetFeatureTypes(std::vector<std::string> const& ft) = 0;
/*!
* \brief Get the feature types for current booster.
* \param fn Output feature types
*/
virtual void GetFeatureTypes(std::vector<std::string>* ft) const = 0;
/*!
* \return whether the model allow lazy checkpoint in rabit.
*/
bool AllowLazyCheckPoint() const;
/*!
* \brief Slice the model.
*
* See InplacePredict for layer parameters.
*
* \param step step size between slice.
* \param out_of_bound Return true if end layer is out of bound.
*
* \return a sliced model.
*/
virtual Learner *Slice(int32_t begin_layer, int32_t end_layer, int32_t step,
bool *out_of_bound) = 0;
/*!
* \brief dump the model in the requested format
* \param fmap feature map that may help give interpretations of feature
* \param with_stats extra statistics while dumping model
* \param format the format to dump the model in
* \return a vector of dump for boosters.
*/
virtual std::vector<std::string> DumpModel(const FeatureMap& fmap,
bool with_stats,
std::string format) = 0;
virtual XGBAPIThreadLocalEntry& GetThreadLocal() const = 0;
/*!
* \brief Create a new instance of learner.
* \param cache_data The matrix to cache the prediction.
* \return Created learner.
*/
static Learner* Create(const std::vector<std::shared_ptr<DMatrix> >& cache_data);
virtual GenericParameter const& GetGenericParameter() const = 0;
/*!
* \brief Get configuration arguments currently stored by the learner
* \return Key-value pairs representing configuration arguments
*/
virtual const std::map<std::string, std::string>& GetConfigurationArguments() const = 0;
protected:
/*! \brief objective function */
std::unique_ptr<ObjFunction> obj_;
/*! \brief The gradient booster used by the model*/
std::unique_ptr<GradientBooster> gbm_;
/*! \brief The evaluation metrics used to evaluate the model. */
std::vector<std::unique_ptr<Metric> > metrics_;
/*! \brief Training parameter. */
GenericParameter generic_parameters_;
};
struct LearnerModelParamLegacy;
/*
* \brief Basic Model Parameters, used to describe the booster.
*/
struct LearnerModelParam {
/* \brief global bias */
bst_float base_score { 0.5f };
/* \brief number of features */
uint32_t num_feature { 0 };
/* \brief number of classes, if it is multi-class classification */
uint32_t num_output_group { 0 };
LearnerModelParam() = default;
// As the old `LearnerModelParamLegacy` is still used by binary IO, we keep
// this one as an immutable copy.
LearnerModelParam(LearnerModelParamLegacy const& user_param, float base_margin);
/* \brief Whether this parameter is initialized with LearnerModelParamLegacy. */
bool Initialized() const { return num_feature != 0; }
};
} // namespace xgboost
#endif // XGBOOST_LEARNER_H_