xgboost/tests/python/test_basic.py
2015-12-29 14:13:40 +01:00

384 lines
14 KiB
Python

# -*- coding: utf-8 -*-
import numpy as np
import xgboost as xgb
import unittest
import matplotlib
matplotlib.use('Agg')
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
class TestBasic(unittest.TestCase):
def test_basic(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
dtest2 = xgb.DMatrix('dtest.buffer')
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def test_dmatrix_init(self):
data = np.random.randn(5, 5)
# different length
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=list('abcdef'))
# contains duplicates
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=['a', 'b', 'c', 'd', 'd'])
# contains symbol
self.assertRaises(ValueError, xgb.DMatrix, data,
feature_names=['a', 'b', 'c', 'd', 'e<1'])
dm = xgb.DMatrix(data)
dm.feature_names = list('abcde')
assert dm.feature_names == list('abcde')
dm.feature_types = 'q'
assert dm.feature_types == list('qqqqq')
dm.feature_types = list('qiqiq')
assert dm.feature_types == list('qiqiq')
def incorrect_type_set():
dm.feature_types = list('abcde')
self.assertRaises(ValueError, incorrect_type_set)
# reset
dm.feature_names = None
assert dm.feature_names is None
assert dm.feature_types is None
def test_feature_names(self):
data = np.random.randn(100, 5)
target = np.array([0, 1] * 50)
cases = [['Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5'],
[u'要因1', u'要因2', u'要因3', u'要因4', u'要因5']]
for features in cases:
dm = xgb.DMatrix(data, label=target,
feature_names=features)
assert dm.feature_names == features
assert dm.num_row() == 100
assert dm.num_col() == 5
params = {'objective': 'multi:softprob',
'eval_metric': 'mlogloss',
'eta': 0.3,
'num_class': 3}
bst = xgb.train(params, dm, num_boost_round=10)
scores = bst.get_fscore()
assert list(sorted(k for k in scores)) == features
dummy = np.random.randn(5, 5)
dm = xgb.DMatrix(dummy, feature_names=features)
bst.predict(dm)
# different feature name must raises error
dm = xgb.DMatrix(dummy, feature_names=list('abcde'))
self.assertRaises(ValueError, bst.predict, dm)
def test_pandas(self):
import pandas as pd
df = pd.DataFrame([[1, 2., True], [2, 3., False]], columns=['a', 'b', 'c'])
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
assert dm.feature_names == ['a', 'b', 'c']
assert dm.feature_types == ['int', 'float', 'i']
assert dm.num_row() == 2
assert dm.num_col() == 3
# overwrite feature_names and feature_types
dm = xgb.DMatrix(df, label=pd.Series([1, 2]),
feature_names=['x', 'y', 'z'], feature_types=['q', 'q', 'q'])
assert dm.feature_names == ['x', 'y', 'z']
assert dm.feature_types == ['q', 'q', 'q']
assert dm.num_row() == 2
assert dm.num_col() == 3
# incorrect dtypes
df = pd.DataFrame([[1, 2., 'x'], [2, 3., 'y']], columns=['a', 'b', 'c'])
self.assertRaises(ValueError, xgb.DMatrix, df)
# numeric columns
df = pd.DataFrame([[1, 2., True], [2, 3., False]])
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
assert dm.feature_names == ['0', '1', '2']
assert dm.feature_types == ['int', 'float', 'i']
assert dm.num_row() == 2
assert dm.num_col() == 3
df = pd.DataFrame([[1, 2., 1], [2, 3., 1]], columns=[4, 5, 6])
dm = xgb.DMatrix(df, label=pd.Series([1, 2]))
assert dm.feature_names == ['4', '5', '6']
assert dm.feature_types == ['int', 'float', 'int']
assert dm.num_row() == 2
assert dm.num_col() == 3
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
dummies = pd.get_dummies(df)
# B A_X A_Y A_Z
# 0 1 1 0 0
# 1 2 0 1 0
# 2 3 0 0 1
result, _, _ = xgb.core._maybe_pandas_data(dummies, None, None)
exp = np.array([[1., 1., 0., 0.],
[2., 0., 1., 0.],
[3., 0., 0., 1.]])
np.testing.assert_array_equal(result, exp)
dm = xgb.DMatrix(dummies)
assert dm.feature_names == ['B', 'A_X', 'A_Y', 'A_Z']
assert dm.feature_types == ['int', 'float', 'float', 'float']
assert dm.num_row() == 3
assert dm.num_col() == 4
df = pd.DataFrame({'A=1': [1, 2, 3], 'A=2': [4, 5, 6]})
dm = xgb.DMatrix(df)
assert dm.feature_names == ['A=1', 'A=2']
assert dm.feature_types == ['int', 'int']
assert dm.num_row() == 3
assert dm.num_col() == 2
def test_pandas_label(self):
import pandas as pd
# label must be a single column
df = pd.DataFrame({'A': ['X', 'Y', 'Z'], 'B': [1, 2, 3]})
self.assertRaises(ValueError, xgb.core._maybe_pandas_label, df)
# label must be supported dtype
df = pd.DataFrame({'A': np.array(['a', 'b', 'c'], dtype=object)})
self.assertRaises(ValueError, xgb.core._maybe_pandas_label, df)
df = pd.DataFrame({'A': np.array([1, 2, 3], dtype=int)})
result = xgb.core._maybe_pandas_label(df)
np.testing.assert_array_equal(result, np.array([[1.], [2.], [3.]], dtype=float))
dm = xgb.DMatrix(np.random.randn(3, 2), label=df)
assert dm.num_row() == 3
assert dm.num_col() == 2
def test_load_file_invalid(self):
self.assertRaises(ValueError, xgb.Booster,
model_file='incorrect_path')
self.assertRaises(ValueError, xgb.Booster,
model_file=u'不正なパス')
def test_dmatrix_numpy_init(self):
data = np.random.randn(5, 5)
dm = xgb.DMatrix(data)
assert dm.num_row() == 5
assert dm.num_col() == 5
data = np.matrix([[1, 2], [3, 4]])
dm = xgb.DMatrix(data)
assert dm.num_row() == 2
assert dm.num_col() == 2
# 0d array
self.assertRaises(ValueError, xgb.DMatrix, np.array(1))
# 1d array
self.assertRaises(ValueError, xgb.DMatrix, np.array([1, 2, 3]))
# 3d array
data = np.random.randn(5, 5, 5)
self.assertRaises(ValueError, xgb.DMatrix, data)
# object dtype
data = np.array([['a', 'b'], ['c', 'd']])
self.assertRaises(ValueError, xgb.DMatrix, data)
def test_cv(self):
dm = xgb.DMatrix(dpath + 'agaricus.txt.train')
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
import pandas as pd
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10)
assert isinstance(cv, pd.DataFrame)
exp = pd.Index([u'test-error-mean', u'test-error-std',
u'train-error-mean', u'train-error-std'])
assert cv.columns.equals(exp)
# show progress log (result is the same as above)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
show_progress=True)
assert isinstance(cv, pd.DataFrame)
exp = pd.Index([u'test-error-mean', u'test-error-std',
u'train-error-mean', u'train-error-std'])
assert cv.columns.equals(exp)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
show_progress=True, show_stdv=False)
assert isinstance(cv, pd.DataFrame)
exp = pd.Index([u'test-error-mean', u'test-error-std',
u'train-error-mean', u'train-error-std'])
assert cv.columns.equals(exp)
# return np.ndarray
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=False)
assert isinstance(cv, np.ndarray)
assert cv.shape == (10, 4)
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': 'auc'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, early_stopping_rounds=1)
assert 'eval_metric' in params
assert 'auc' in cv.columns[0]
assert cv.shape[0] < 10
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='auc')
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['auc'])
assert 'auc' in cv.columns[0]
params = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic', 'eval_metric': ['auc']}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics='error')
assert 'eval_metric' in params
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error'])
assert 'eval_metric' in params
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
params = list(params.items())
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10, as_pandas=True, metrics=['error'])
assert isinstance(params, list)
assert 'auc' not in cv.columns[0]
assert 'error' in cv.columns[0]
def test_plotting(self):
bst2 = xgb.Booster(model_file='xgb.model')
# plotting
from matplotlib.axes import Axes
from graphviz import Digraph
ax = xgb.plot_importance(bst2)
assert isinstance(ax, Axes)
assert ax.get_title() == 'Feature importance'
assert ax.get_xlabel() == 'F score'
assert ax.get_ylabel() == 'Features'
assert len(ax.patches) == 4
ax = xgb.plot_importance(bst2, color='r',
title='t', xlabel='x', ylabel='y')
assert isinstance(ax, Axes)
assert ax.get_title() == 't'
assert ax.get_xlabel() == 'x'
assert ax.get_ylabel() == 'y'
assert len(ax.patches) == 4
for p in ax.patches:
assert p.get_facecolor() == (1.0, 0, 0, 1.0) # red
ax = xgb.plot_importance(bst2, color=['r', 'r', 'b', 'b'],
title=None, xlabel=None, ylabel=None)
assert isinstance(ax, Axes)
assert ax.get_title() == ''
assert ax.get_xlabel() == ''
assert ax.get_ylabel() == ''
assert len(ax.patches) == 4
assert ax.patches[0].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[1].get_facecolor() == (1.0, 0, 0, 1.0) # red
assert ax.patches[2].get_facecolor() == (0, 0, 1.0, 1.0) # blue
assert ax.patches[3].get_facecolor() == (0, 0, 1.0, 1.0) # blue
g = xgb.to_graphviz(bst2, num_trees=0)
assert isinstance(g, Digraph)
ax = xgb.plot_tree(bst2, num_trees=0)
assert isinstance(ax, Axes)
def test_importance_plot_lim(self):
np.random.seed(1)
dm = xgb.DMatrix(np.random.randn(100, 100), label=[0, 1] * 50)
bst = xgb.train({}, dm)
assert len(bst.get_fscore()) == 71
ax = xgb.plot_importance(bst)
assert ax.get_xlim() == (0., 11.)
assert ax.get_ylim() == (-1., 71.)
ax = xgb.plot_importance(bst, xlim=(0, 5), ylim=(10, 71))
assert ax.get_xlim() == (0., 5.)
assert ax.get_ylim() == (10., 71.)
def test_sklearn_api(self):
from sklearn import datasets
from sklearn.cross_validation import train_test_split
np.random.seed(1)
iris = datasets.load_iris()
tr_d, te_d, tr_l, te_l = train_test_split(iris.data, iris.target, train_size=120)
classifier = xgb.XGBClassifier()
classifier.fit(tr_d, tr_l)
preds = classifier.predict(te_d)
labels = te_l
err = sum([1 for p, l in zip(preds, labels) if p != l]) / len(te_l)
# error must be smaller than 10%
assert err < 0.1
def test_sklearn_plotting(self):
from sklearn import datasets
iris = datasets.load_iris()
classifier = xgb.XGBClassifier()
classifier.fit(iris.data, iris.target)
import matplotlib
matplotlib.use('Agg')
from matplotlib.axes import Axes
from graphviz import Digraph
ax = xgb.plot_importance(classifier)
assert isinstance(ax, Axes)
assert ax.get_title() == 'Feature importance'
assert ax.get_xlabel() == 'F score'
assert ax.get_ylabel() == 'Features'
assert len(ax.patches) == 4
g = xgb.to_graphviz(classifier, num_trees=0)
assert isinstance(g, Digraph)
ax = xgb.plot_tree(classifier, num_trees=0)
assert isinstance(ax, Axes)