xgboost/src/objective/hinge.cu
Jiaming Yuan 2e618af743
Fix cpplint. (#4157)
* Add comment after #endif.
* Add missing headers.
2019-02-18 00:16:29 +08:00

110 lines
3.6 KiB
Plaintext

/*!
* Copyright 2018 by Contributors
* \file hinge.cc
* \brief Provides an implementation of the hinge loss function
* \author Henry Gouk
*/
#include <xgboost/objective.h>
#include "../common/math.h"
#include "../common/transform.h"
#include "../common/common.h"
#include "../common/span.h"
#include "../common/host_device_vector.h"
namespace xgboost {
namespace obj {
#if defined(XGBOOST_USE_CUDA)
DMLC_REGISTRY_FILE_TAG(hinge_obj_gpu);
#endif // defined(XGBOOST_USE_CUDA)
struct HingeObjParam : public dmlc::Parameter<HingeObjParam> {
int n_gpus;
int gpu_id;
DMLC_DECLARE_PARAMETER(HingeObjParam) {
DMLC_DECLARE_FIELD(n_gpus).set_default(1).set_lower_bound(GPUSet::kAll)
.describe("Number of GPUs to use for multi-gpu algorithms.");
DMLC_DECLARE_FIELD(gpu_id)
.set_lower_bound(0)
.set_default(0)
.describe("gpu to use for objective function evaluation");
}
};
class HingeObj : public ObjFunction {
public:
HingeObj() = default;
void Configure(
const std::vector<std::pair<std::string, std::string> > &args) override {
param_.InitAllowUnknown(args);
devices_ = GPUSet::All(param_.gpu_id, param_.n_gpus);
label_correct_.Resize(devices_.IsEmpty() ? 1 : devices_.Size());
}
void GetGradient(const HostDeviceVector<bst_float> &preds,
const MetaInfo &info,
int iter,
HostDeviceVector<GradientPair> *out_gpair) override {
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels_.Size())
<< "labels are not correctly provided"
<< "preds.size=" << preds.Size()
<< ", label.size=" << info.labels_.Size();
const bool is_null_weight = info.weights_.Size() == 0;
const size_t ndata = preds.Size();
out_gpair->Resize(ndata);
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t _idx,
common::Span<int> _label_correct,
common::Span<GradientPair> _out_gpair,
common::Span<const bst_float> _preds,
common::Span<const bst_float> _labels,
common::Span<const bst_float> _weights) {
bst_float p = _preds[_idx];
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
bst_float y = _labels[_idx] * 2.0 - 1.0;
bst_float g, h;
if (p * y < 1.0) {
g = -y * w;
h = w;
} else {
g = 0.0;
h = std::numeric_limits<bst_float>::min();
}
_out_gpair[_idx] = GradientPair(g, h);
},
common::Range{0, static_cast<int64_t>(ndata)}, devices_).Eval(
&label_correct_, out_gpair, &preds, &info.labels_, &info.weights_);
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
common::Transform<>::Init(
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
_preds[_idx] = _preds[_idx] > 0.0 ? 1.0 : 0.0;
},
common::Range{0, static_cast<int64_t>(io_preds->Size()), 1}, devices_)
.Eval(io_preds);
}
const char* DefaultEvalMetric() const override {
return "error";
}
private:
GPUSet devices_;
HostDeviceVector<int> label_correct_;
HingeObjParam param_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(HingeObjParam);
// register the objective functions
XGBOOST_REGISTER_OBJECTIVE(HingeObj, "binary:hinge")
.describe("Hinge loss. Expects labels to be in [0,1f]")
.set_body([]() { return new HingeObj(); });
} // namespace obj
} // namespace xgboost