xgboost/src/tree/hist/histogram.h

346 lines
14 KiB
C++

/*!
* Copyright 2021-2022 by XGBoost Contributors
*/
#ifndef XGBOOST_TREE_HIST_HISTOGRAM_H_
#define XGBOOST_TREE_HIST_HISTOGRAM_H_
#include <algorithm>
#include <limits>
#include <vector>
#include "../../common/hist_util.h"
#include "../../data/gradient_index.h"
#include "expand_entry.h"
#include "rabit/rabit.h"
#include "xgboost/tree_model.h"
namespace xgboost {
namespace tree {
template <typename ExpandEntry>
class HistogramBuilder {
/*! \brief culmulative histogram of gradients. */
common::HistCollection hist_;
/*! \brief culmulative local parent histogram of gradients. */
common::HistCollection hist_local_worker_;
common::GHistBuilder builder_;
common::ParallelGHistBuilder buffer_;
BatchParam param_;
int32_t n_threads_{-1};
size_t n_batches_{0};
// Whether XGBoost is running in distributed environment.
bool is_distributed_{false};
public:
/**
* \param total_bins Total number of bins across all features
* \param max_bin_per_feat Maximum number of bins per feature, same as the `max_bin`
* training parameter.
* \param n_threads Number of threads.
* \param is_distributed Mostly used for testing to allow injecting parameters instead
* of using global rabit variable.
*/
void Reset(uint32_t total_bins, BatchParam p, int32_t n_threads, size_t n_batches,
bool is_distributed) {
CHECK_GE(n_threads, 1);
n_threads_ = n_threads;
n_batches_ = n_batches;
param_ = p;
hist_.Init(total_bins);
hist_local_worker_.Init(total_bins);
buffer_.Init(total_bins);
builder_ = common::GHistBuilder(total_bins);
is_distributed_ = is_distributed;
// Workaround s390x gcc 7.5.0
auto DMLC_ATTRIBUTE_UNUSED __force_instantiation = &GradientPairPrecise::Reduce;
}
template <bool any_missing>
void BuildLocalHistograms(size_t page_idx, common::BlockedSpace2d space,
GHistIndexMatrix const &gidx,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
common::RowSetCollection const &row_set_collection,
const std::vector<GradientPair> &gpair_h) {
const size_t n_nodes = nodes_for_explicit_hist_build.size();
CHECK_GT(n_nodes, 0);
std::vector<common::GHistRow> target_hists(n_nodes);
for (size_t i = 0; i < n_nodes; ++i) {
const int32_t nid = nodes_for_explicit_hist_build[i].nid;
target_hists[i] = hist_[nid];
}
if (page_idx == 0) {
// FIXME(jiamingy): Handle different size of space. Right now we use the maximum
// partition size for the buffer, which might not be efficient if partition sizes
// has significant variance.
buffer_.Reset(this->n_threads_, n_nodes, space, target_hists);
}
// Parallel processing by nodes and data in each node
common::ParallelFor2d(space, this->n_threads_, [&](size_t nid_in_set, common::Range1d r) {
const auto tid = static_cast<unsigned>(omp_get_thread_num());
const int32_t nid = nodes_for_explicit_hist_build[nid_in_set].nid;
auto elem = row_set_collection[nid];
auto start_of_row_set = std::min(r.begin(), elem.Size());
auto end_of_row_set = std::min(r.end(), elem.Size());
auto rid_set = common::RowSetCollection::Elem(elem.begin + start_of_row_set,
elem.begin + end_of_row_set, nid);
auto hist = buffer_.GetInitializedHist(tid, nid_in_set);
if (rid_set.Size() != 0) {
builder_.template BuildHist<any_missing>(gpair_h, rid_set, gidx, hist);
}
});
}
void
AddHistRows(int *starting_index, int *sync_count,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
RegTree *p_tree) {
if (is_distributed_) {
this->AddHistRowsDistributed(starting_index, sync_count,
nodes_for_explicit_hist_build,
nodes_for_subtraction_trick, p_tree);
} else {
this->AddHistRowsLocal(starting_index, sync_count,
nodes_for_explicit_hist_build,
nodes_for_subtraction_trick);
}
}
/** Main entry point of this class, build histogram for tree nodes. */
void BuildHist(size_t page_id, common::BlockedSpace2d space, GHistIndexMatrix const &gidx,
RegTree *p_tree, common::RowSetCollection const &row_set_collection,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
std::vector<GradientPair> const &gpair) {
int starting_index = std::numeric_limits<int>::max();
int sync_count = 0;
if (page_id == 0) {
this->AddHistRows(&starting_index, &sync_count,
nodes_for_explicit_hist_build,
nodes_for_subtraction_trick, p_tree);
}
if (gidx.IsDense()) {
this->BuildLocalHistograms<false>(page_id, space, gidx,
nodes_for_explicit_hist_build,
row_set_collection, gpair);
} else {
this->BuildLocalHistograms<true>(page_id, space, gidx,
nodes_for_explicit_hist_build,
row_set_collection, gpair);
}
CHECK_GE(n_batches_, 1);
if (page_id != n_batches_ - 1) {
return;
}
if (is_distributed_) {
this->SyncHistogramDistributed(p_tree, nodes_for_explicit_hist_build,
nodes_for_subtraction_trick,
starting_index, sync_count);
} else {
this->SyncHistogramLocal(p_tree, nodes_for_explicit_hist_build,
nodes_for_subtraction_trick, starting_index,
sync_count);
}
}
/** same as the other build hist but handles only single batch data (in-core) */
void BuildHist(size_t page_id, GHistIndexMatrix const &gidx, RegTree *p_tree,
common::RowSetCollection const &row_set_collection,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
std::vector<GradientPair> const &gpair) {
const size_t n_nodes = nodes_for_explicit_hist_build.size();
// create space of size (# rows in each node)
common::BlockedSpace2d space(
n_nodes,
[&](size_t nidx_in_set) {
const int32_t nidx = nodes_for_explicit_hist_build[nidx_in_set].nid;
return row_set_collection[nidx].Size();
},
256);
this->BuildHist(page_id, space, gidx, p_tree, row_set_collection,
nodes_for_explicit_hist_build, nodes_for_subtraction_trick,
gpair);
}
void SyncHistogramDistributed(
RegTree *p_tree,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
int starting_index, int sync_count) {
const size_t nbins = builder_.GetNumBins();
common::BlockedSpace2d space(
nodes_for_explicit_hist_build.size(), [&](size_t) { return nbins; },
1024);
common::ParallelFor2d(
space, n_threads_, [&](size_t node, common::Range1d r) {
const auto &entry = nodes_for_explicit_hist_build[node];
auto this_hist = this->hist_[entry.nid];
// Merging histograms from each thread into once
buffer_.ReduceHist(node, r.begin(), r.end());
// Store posible parent node
auto this_local = hist_local_worker_[entry.nid];
common::CopyHist(this_local, this_hist, r.begin(), r.end());
if (!(*p_tree)[entry.nid].IsRoot()) {
const size_t parent_id = (*p_tree)[entry.nid].Parent();
const int subtraction_node_id =
nodes_for_subtraction_trick[node].nid;
auto parent_hist = this->hist_local_worker_[parent_id];
auto sibling_hist = this->hist_[subtraction_node_id];
common::SubtractionHist(sibling_hist, parent_hist, this_hist,
r.begin(), r.end());
// Store posible parent node
auto sibling_local = hist_local_worker_[subtraction_node_id];
common::CopyHist(sibling_local, sibling_hist, r.begin(), r.end());
}
});
rabit::Allreduce<rabit::op::Sum>(reinterpret_cast<double*>(this->hist_[starting_index].data()),
builder_.GetNumBins() * sync_count * 2);
ParallelSubtractionHist(space, nodes_for_explicit_hist_build,
nodes_for_subtraction_trick, p_tree);
common::BlockedSpace2d space2(
nodes_for_subtraction_trick.size(), [&](size_t) { return nbins; },
1024);
ParallelSubtractionHist(space2, nodes_for_subtraction_trick,
nodes_for_explicit_hist_build, p_tree);
}
void SyncHistogramLocal(
RegTree *p_tree,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
int starting_index, int sync_count) {
const size_t nbins = this->builder_.GetNumBins();
common::BlockedSpace2d space(
nodes_for_explicit_hist_build.size(), [&](size_t) { return nbins; },
1024);
common::ParallelFor2d(
space, this->n_threads_, [&](size_t node, common::Range1d r) {
const auto &entry = nodes_for_explicit_hist_build[node];
auto this_hist = this->hist_[entry.nid];
// Merging histograms from each thread into once
this->buffer_.ReduceHist(node, r.begin(), r.end());
if (!(*p_tree)[entry.nid].IsRoot()) {
const size_t parent_id = (*p_tree)[entry.nid].Parent();
const int subtraction_node_id =
nodes_for_subtraction_trick[node].nid;
auto parent_hist = this->hist_[parent_id];
auto sibling_hist = this->hist_[subtraction_node_id];
common::SubtractionHist(sibling_hist, parent_hist, this_hist,
r.begin(), r.end());
}
});
}
public:
/* Getters for tests. */
common::HistCollection const &Histogram() { return hist_; }
auto& Buffer() { return buffer_; }
private:
void
ParallelSubtractionHist(const common::BlockedSpace2d &space,
const std::vector<ExpandEntry> &nodes,
const std::vector<ExpandEntry> &subtraction_nodes,
const RegTree *p_tree) {
common::ParallelFor2d(
space, this->n_threads_, [&](size_t node, common::Range1d r) {
const auto &entry = nodes[node];
if (!((*p_tree)[entry.nid].IsLeftChild())) {
auto this_hist = this->hist_[entry.nid];
if (!(*p_tree)[entry.nid].IsRoot()) {
const int subtraction_node_id = subtraction_nodes[node].nid;
auto parent_hist = hist_[(*p_tree)[entry.nid].Parent()];
auto sibling_hist = hist_[subtraction_node_id];
common::SubtractionHist(this_hist, parent_hist, sibling_hist,
r.begin(), r.end());
}
}
});
}
// Add a tree node to histogram buffer in local training environment.
void AddHistRowsLocal(
int *starting_index, int *sync_count,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick) {
for (auto const &entry : nodes_for_explicit_hist_build) {
int nid = entry.nid;
this->hist_.AddHistRow(nid);
(*starting_index) = std::min(nid, (*starting_index));
}
(*sync_count) = nodes_for_explicit_hist_build.size();
for (auto const &node : nodes_for_subtraction_trick) {
this->hist_.AddHistRow(node.nid);
}
this->hist_.AllocateAllData();
}
void AddHistRowsDistributed(
int *starting_index, int *sync_count,
std::vector<ExpandEntry> const &nodes_for_explicit_hist_build,
std::vector<ExpandEntry> const &nodes_for_subtraction_trick,
RegTree *p_tree) {
const size_t explicit_size = nodes_for_explicit_hist_build.size();
const size_t subtaction_size = nodes_for_subtraction_trick.size();
std::vector<int> merged_node_ids(explicit_size + subtaction_size);
for (size_t i = 0; i < explicit_size; ++i) {
merged_node_ids[i] = nodes_for_explicit_hist_build[i].nid;
}
for (size_t i = 0; i < subtaction_size; ++i) {
merged_node_ids[explicit_size + i] = nodes_for_subtraction_trick[i].nid;
}
std::sort(merged_node_ids.begin(), merged_node_ids.end());
int n_left = 0;
for (auto const &nid : merged_node_ids) {
if ((*p_tree)[nid].IsLeftChild()) {
this->hist_.AddHistRow(nid);
(*starting_index) = std::min(nid, (*starting_index));
n_left++;
this->hist_local_worker_.AddHistRow(nid);
}
}
for (auto const &nid : merged_node_ids) {
if (!((*p_tree)[nid].IsLeftChild())) {
this->hist_.AddHistRow(nid);
this->hist_local_worker_.AddHistRow(nid);
}
}
this->hist_.AllocateAllData();
this->hist_local_worker_.AllocateAllData();
(*sync_count) = std::max(1, n_left);
}
};
// Construct a work space for building histogram. Eventually we should move this
// function into histogram builder once hist tree method supports external memory.
template <typename Partitioner>
common::BlockedSpace2d ConstructHistSpace(Partitioner const &partitioners,
std::vector<CPUExpandEntry> const &nodes_to_build) {
std::vector<size_t> partition_size(nodes_to_build.size(), 0);
for (auto const &partition : partitioners) {
size_t k = 0;
for (auto node : nodes_to_build) {
auto n_rows_in_node = partition.Partitions()[node.nid].Size();
partition_size[k] = std::max(partition_size[k], n_rows_in_node);
k++;
}
}
common::BlockedSpace2d space{
nodes_to_build.size(), [&](size_t nidx_in_set) { return partition_size[nidx_in_set]; }, 256};
return space;
}
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_HIST_HISTOGRAM_H_